1
|
Zhao S, Yan L, Kamran M, Liu S, Riaz M. Arbuscular Mycorrhizal Fungi-Assisted Phytoremediation: A Promising Strategy for Cadmium-Contaminated Soils. PLANTS (BASEL, SWITZERLAND) 2024; 13:3289. [PMID: 39683082 DOI: 10.3390/plants13233289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) have been shown to play a major role in regulating the accumulation, transport, and toxicity of cadmium (Cd) in plant tissues. This review aims to highlight the current understanding of the mechanisms by which AMF alleviate Cd toxicity in plants. Cd accumulation in agricultural soils has become an increasing global concern due to industrial activities and the use of phosphatic fertilizers. Cd toxicity disrupts various physiological processes in plants, adversely affecting growth, photosynthesis, oxidative stress responses, and secondary metabolism. AMF alleviate Cd stress in plants through multiple mechanisms, including reduced Cd transport into plant roots, improved plant nutritional status, modulation of organic acid and protein exudation, enhanced antioxidant capacity, and maintenance of ion homeostasis. AMF colonization also influences Cd speciation, bioavailability, and compartmentalization within plant tissues. The expression of metal transporter genes, as well as the synthesis of phytochelatins and metallothioneins, are modulated by AMF during Cd stress. However, the efficacy of AMF in mitigating Cd toxicity depends on several factors, such as soil properties, plant species, AMF taxa, and experimental duration. Further knowledge of the intricate plant-AMF-Cd interactions is crucial for optimizing AMF-assisted phytoremediation strategies and developing Cd-tolerant and high-yielding crop varieties for cultivation in contaminated soils.
Collapse
Affiliation(s)
- Shaopeng Zhao
- Guangdong Engineering and Technology Center for Environmental Pollution Prevention and Control in Agricultural Producing Areas, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Lei Yan
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shanshan Liu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Muhammad Riaz
- Guangdong Engineering and Technology Center for Environmental Pollution Prevention and Control in Agricultural Producing Areas, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
2
|
Caccia M, Marro N, Novák V, Ráez JAL, Castillo P, Janoušková M. Divergent colonization traits, convergent benefits: different species of arbuscular mycorrhizal fungi alleviate Meloidogyne incognita damage in tomato. MYCORRHIZA 2024; 34:145-158. [PMID: 38441668 PMCID: PMC10998783 DOI: 10.1007/s00572-024-01139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/21/2024] [Indexed: 04/07/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) can increase plant tolerance and/or resistance to pests such as the root-knot nematode Meloidogyne incognita. However, the ameliorative effects may depend on AMF species. The aim of this work was therefore to evaluate whether four AMF species differentially affect plant performance in response to M. incognita infection. Tomato plants grown in greenhouse conditions were inoculated with four different AMF isolates (Claroideoglomus claroideum, Funneliformis mosseae, Gigaspora margarita, and Rhizophagus intraradices) and infected with 100 second stage juveniles of M. incognita at two different times: simultaneously or 2 weeks after the inoculation with AMF. After 60 days, the number of galls, egg masses, and reproduction factor of the nematodes were assessed along with plant biomass, phosphorus (P), and nitrogen concentrations in roots and shoots and root colonization by AMF. Only the simultaneous nematode inoculation without AMF caused a large reduction in plant shoot biomass, while all AMF species were able to ameliorate this effect and improve plant P uptake. The AMF isolates responded differently to the interaction with nematodes, either increasing the frequency of vesicles (C. claroideum) or reducing the number of arbuscules (F. mosseae and Gi. margarita). AMF inoculation did not decrease galls; however, it reduced the number of egg masses per gall in nematode simultaneous inoculation, except for C. claroideum. This work shows the importance of biotic stress alleviation associated with an improvement in P uptake and mediated by four different AMF species, irrespective of their fungal root colonization levels and specific interactions with the parasite.
Collapse
Affiliation(s)
- Milena Caccia
- Institute of Botany, Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic.
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, CC, 495, 5000, Córdoba, Argentina.
| | - Nicolás Marro
- Institute of Botany, Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, CC, 495, 5000, Córdoba, Argentina
| | - Václav Novák
- Institute of Botany, Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
| | - Juan Antonio López Ráez
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ-CSIC), C/ Profesor Albareda 1, 18008, Granada, Spain
| | - Pablo Castillo
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Campus de Excelencia Internacional Agroalimentario, ceiA3, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Martina Janoušková
- Institute of Botany, Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
| |
Collapse
|
3
|
Corazon-Guivin MA, Romero-Cachique G, Del Aguila KM, Padilla-Domínguez A, Hernández-Amasifuen AD, Cerna-Mendoza A, Coyne D, Oehl F. Rhizoglomus variabile and Nanoglomus plukenetiae, Native to Peru, Promote Coffee Growth in Western Amazonia. Microorganisms 2023; 11:2883. [PMID: 38138027 PMCID: PMC10745942 DOI: 10.3390/microorganisms11122883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Coffee (Coffea arabica) is among the world's most economically important crops. Coffee was shown to be highly dependent on arbuscular mycorrhizal fungi (AMF) in traditionally managed coffee plantations in the tropics. The objective of this study was to assess AMF species richness in coffee plantations of four provinces in Perú, to isolate AMF isolates native to these provinces, and to test the effects of selected indigenous AMF strains on coffee growth. AMF species were identified by morphological tools on the genus level, and if possible further to the species level. Two native species, Rhizoglomus variabile and Nanoglomus plukenetiae, recently described from the Peruvian mountain ranges, were successfully cultured in the greenhouse on host plants. In two independent experiments, both species were assessed for their ability to colonize coffee seedlings and improve coffee growth over 135 days. A total of 35 AMF morphospecies were identified from 12 plantations. The two inoculated species effectively colonized coffee roots, which resulted in 3.0-8.6 times higher shoot, root and total biomass, when compared to the non-mycorrhizal controls. R. variabile was superior to N. plukenetiae in all measured parameters, increasing shoot, root, and total biomass dry weight by 4.7, 8.6 and 5.5 times, respectively. The dual inoculation of both species, however, did not further improve plant growth, when compared to single-species inoculations. The colonization of coffee by either R. variabile or N. plukenetiae strongly enhances coffee plant growth. R. variabile, in particular, offers enormous potential for improving coffee establishment and productivity. Assessment of further AMF species, including species from other AMF families should be considered for optimization of coffee growth promotion, both alone and in combination with R. variabile.
Collapse
Affiliation(s)
- Mike Anderson Corazon-Guivin
- Laboratorio de Biología y Genética Molecular, Universidad Nacional de San Martín, Jr. Amorarca N° 315, Morales 22201, Peru; (G.R.-C.); (K.M.D.A.); (A.P.-D.); (A.D.H.-A.); (A.C.-M.)
| | - Gabriel Romero-Cachique
- Laboratorio de Biología y Genética Molecular, Universidad Nacional de San Martín, Jr. Amorarca N° 315, Morales 22201, Peru; (G.R.-C.); (K.M.D.A.); (A.P.-D.); (A.D.H.-A.); (A.C.-M.)
| | - Karen M. Del Aguila
- Laboratorio de Biología y Genética Molecular, Universidad Nacional de San Martín, Jr. Amorarca N° 315, Morales 22201, Peru; (G.R.-C.); (K.M.D.A.); (A.P.-D.); (A.D.H.-A.); (A.C.-M.)
| | - Amner Padilla-Domínguez
- Laboratorio de Biología y Genética Molecular, Universidad Nacional de San Martín, Jr. Amorarca N° 315, Morales 22201, Peru; (G.R.-C.); (K.M.D.A.); (A.P.-D.); (A.D.H.-A.); (A.C.-M.)
| | - Angel David Hernández-Amasifuen
- Laboratorio de Biología y Genética Molecular, Universidad Nacional de San Martín, Jr. Amorarca N° 315, Morales 22201, Peru; (G.R.-C.); (K.M.D.A.); (A.P.-D.); (A.D.H.-A.); (A.C.-M.)
| | - Agustin Cerna-Mendoza
- Laboratorio de Biología y Genética Molecular, Universidad Nacional de San Martín, Jr. Amorarca N° 315, Morales 22201, Peru; (G.R.-C.); (K.M.D.A.); (A.P.-D.); (A.D.H.-A.); (A.C.-M.)
| | - Danny Coyne
- International Institute of Tropical Agriculture (IITA), Headquarters PMB 5320, Oyo Road, Ibadan 200001, Oyo State, Nigeria;
| | - Fritz Oehl
- Agroscope, Competence Division for Plants and Plant Products, Plant Protection Products—Impact and Assessment, Applied Ecotoxicology, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland
| |
Collapse
|
4
|
Faghihinia M, Jansa J. Mycorrhiza governs plant-plant interactions through preferential allocation of shared nutritional resources: A triple ( 13C, 15N and 33P) labeling study. FRONTIERS IN PLANT SCIENCE 2022; 13:1047270. [PMID: 36589136 PMCID: PMC9799978 DOI: 10.3389/fpls.2022.1047270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/17/2022] [Indexed: 05/13/2023]
Abstract
Plant-plant interactions and coexistence can be directly mediated by symbiotic arbuscular mycorrhizal (AM) fungi through asymmetric resource exchange between the plant and fungal partners. However, little is known about the effects of AM fungal presence on resource allocation in mixed plant stands. Here, we examined how phosphorus (P), nitrogen (N) and carbon (C) resources were distributed between coexisting con- and heterospecific plant individuals in the presence or absence of AM fungus, using radio- and stable isotopes. Congeneric plant species, Panicum bisulcatum and P. maximum, inoculated or not with Rhizophagus irregularis, were grown in two different culture systems, mono- and mixed-species stands. Pots were subjected to different shading regimes to manipulate C sink-source strengths. In monocultures, P. maximum gained more mycorrhizal phosphorus uptake benefits than P.bisulcatum. However, in the mixed culture, the AM fungus appeared to preferentially transfer nutrients (33P and 15N) to P.bisulcatum compared to P. maximum. Further, we observed higher 13C allocation to mycorrhiza by P.bisulcatum in mixed- compared to the mono-systems, which likely contributed to improved competitiveness in the mixed cultures of P.bisulcatum vs. P. maximum regardless of the shading regime. Our results suggest that the presence of mycorrhiza influenced competitiveness of the two Panicum species in mixed stands in favor of those with high quality partner, P. bisulcatum, which provided more C to the mycorrhizal networks. However, in mono-species systems where the AM fungus had no partner choice, even the lower quality partner (i.e., P.maximum) could also have benefitted from the symbiosis. Future research should separate the various contributors (roots vs. common mycorrhizal network) and mechanisms of resource exchange in such a multifaceted interaction.
Collapse
Affiliation(s)
- Maede Faghihinia
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Praha, Czechia
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States
| | - Jan Jansa
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Praha, Czechia
| |
Collapse
|
5
|
Arbuscular mycorrhiza alters the nutritional requirements in Salvia miltiorrhiza and low nitrogen enhances the mycorrhizal efficiency. Sci Rep 2022; 12:19633. [PMID: 36385104 PMCID: PMC9668911 DOI: 10.1038/s41598-022-17121-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Salvia miltiorrhiza Bunge (danshen in Chinese) is one of the most important medicinal cash crops in China. Previously, we showed that arbuscular mycorrhizal fungi (AMF) can promote S. miltiorrhiza growth and the accumulation of bioactive compounds. Fertilization may affect mycorrhizal efficiency, and appropriate doses of phosphate (P) and nitrogen (N) fertilizers are key factors for obtaining mycorrhizal benefits. However, the optimal fertilization amount for mycorrhizal S. miltiorrhiza remains unclear. In this study, we studied the effects of AMF on the growth and bioactive compounds of S. miltiorrhiza under different doses (low, medium, and high) of P and N fertilizer. The results showed that the mycorrhizal growth response (MGR) and mycorrhizal response of bioactive compounds (MBC) decreased gradually with increasing P addition. Application of a low (N25) dose of N fertilizer significantly increased the MGR of mycorrhizal S. miltiorrhiza, and a medium (N50) dose of N fertilizer significantly increased the MBC of phenolic acids, but decreased the MBC of tanshinones. Our results also showed that the existence of arbuscular mycorrhiza changes nutrient requirement pattern of S. miltiorrhiza. P is the limiting nutrient of non-mycorrhizal plants whereas N is the limiting nutrient of mycorrhizal plants.
Collapse
|
6
|
Abstract
Specific quantification of root-colonizing arbuscular mycorrhizal fungi (AMF) by quantitative real-time PCR is a high-throughput technique, most suitable for determining abundances of AMF species or isolates in previously characterized experimental systems. The principal steps are the choice and validation of an appropriate assay to specifically amplify a gene fragment of the target AMF, preparation of templates from root samples, and quantification of the fungal gene copy numbers in these templates. The use of a suitable assay is crucial for a correct data collection but also highly specific for each experimental system and is therefore covered by general recommendations. Subsequently, specific steps are described for the validation of the assay using a standard dilution series, the determination of appropriate dilutions of DNA extracts from roots, and the quantification of the gene copy numbers in samples including calculations.
Collapse
|
7
|
Püschel D, Bitterlich M, Rydlová J, Jansa J. Facilitation of plant water uptake by an arbuscular mycorrhizal fungus: a Gordian knot of roots and hyphae. MYCORRHIZA 2020; 30:299-313. [PMID: 32253570 DOI: 10.1007/s00572-020-00949-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi play a positive role in plant water relations, and the AM symbiosis is often cited as beneficial for overcoming drought stress of host plants. Nevertheless, water uptake via mycorrhizal hyphal networks has been little addressed experimentally, especially so through isotope tracing. In a greenhouse study conducted in two-compartment rhizoboxes, Medicago truncatula was planted in the primary compartment (PC), either inoculated with Rhizophagus irregularis or left uninoculated. Plant roots were either allowed to enter the secondary compartment (SC) or were restricted to the PC by root-excluding mesh. Substrate moisture was manipulated in the PC such that the plants were grown either in high moisture (15% of gravimetric water content, GWC) or low moisture (8% GWC). Meanwhile, the SC was maintained at 15% GWC throughout and served as a water source accessible (or not) by roots and/or hyphae. Water in the SC was labeled with deuterium (D) to quantify water uptake by the plants from the SC. Significantly, increased D incorporation into plants indicated higher water uptake by mycorrhizal plants when roots had access to the D source, but this was mainly explained by generally larger mycorrhizal root systems in proximity to the D source. On the other hand, AM fungal hyphae with access to the D source increased D incorporation into plants more than twofold compared to non-mycorrhizal plants. Despite this strong effect, water transport via AM fungal hyphae was low compared to the transpiration demand of the plants.
Collapse
Affiliation(s)
- David Püschel
- Department of Mycorrhizal Symbioses, Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic.
- Laboratory of Fungal Biology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Michael Bitterlich
- Leibniz Institute of Vegetable and Ornamental Crops e.V. (IGZ), Grossbeeren, Germany
| | - Jana Rydlová
- Department of Mycorrhizal Symbioses, Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
| | - Jan Jansa
- Laboratory of Fungal Biology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|