1
|
Slimani A, Ait-El-Mokhtar M, Ben-Laouane R, Boutasknit A, Anli M, Abouraicha EF, Oufdou K, Meddich A, Baslam M. Signals and Machinery for Mycorrhizae and Cereal and Oilseed Interactions towards Improved Tolerance to Environmental Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:826. [PMID: 38592805 PMCID: PMC10975020 DOI: 10.3390/plants13060826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
In the quest for sustainable agricultural practices, there arises an urgent need for alternative solutions to mineral fertilizers and pesticides, aiming to diminish the environmental footprint of farming. Arbuscular mycorrhizal fungi (AMF) emerge as a promising avenue, bestowing plants with heightened nutrient absorption capabilities while alleviating plant stress. Cereal and oilseed crops benefit from this association in a number of ways, including improved growth fitness, nutrient uptake, and tolerance to environmental stresses. Understanding the molecular mechanisms shaping the impact of AMF on these crops offers encouraging prospects for a more efficient use of these beneficial microorganisms to mitigate climate change-related stressors on plant functioning and productivity. An increased number of studies highlighted the boosting effect of AMF on grain and oil crops' tolerance to (a)biotic stresses while limited ones investigated the molecular aspects orchestrating the different involved mechanisms. This review gives an extensive overview of the different strategies initiated by mycorrhizal cereal and oilseed plants to manage the deleterious effects of environmental stress. We also discuss the molecular drivers and mechanistic concepts to unveil the molecular machinery triggered by AMF to alleviate the tolerance of these crops to stressors.
Collapse
Affiliation(s)
- Aiman Slimani
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Mohamed Ait-El-Mokhtar
- Laboratory of Biochemistry, Environment & Agri-Food URAC 36, Department of Biology, Faculty of Science and Techniques—Mohammedia, Hassan II University, Mohammedia 28800, Morocco
| | - Raja Ben-Laouane
- Laboratory of Environment and Health, Department of Biology, Faculty of Science and Techniques, Errachidia 52000, Morocco
| | - Abderrahim Boutasknit
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Multidisciplinary Faculty of Nador, Mohammed First University, Nador 62700, Morocco
| | - Mohamed Anli
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Department of Life, Earth and Environmental Sciences, University of Comoros, Patsy University Center, Moroni 269, Comoros
| | - El Faiza Abouraicha
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Higher Institute of Nursing and Health Techniques (ISPITS), Essaouira 44000, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- AgroBiosciences Program, College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Ben Guerir 43150, Morocco
| | - Abdelilah Meddich
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Marouane Baslam
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- GrowSmart, Seoul 03129, Republic of Korea
| |
Collapse
|
2
|
Fresno DH, Solé‐Corbatón H, Munné‐Bosch S. Water stress protection by the arbuscular mycorrhizal fungus Rhizoglomus irregulare involves physiological and hormonal responses in an organ-specific manner. PHYSIOLOGIA PLANTARUM 2023; 175:e13854. [PMID: 36651309 PMCID: PMC10108154 DOI: 10.1111/ppl.13854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 06/15/2023]
Abstract
Arbuscular mycorrhizal fungi may alleviate water stress in plants. Although several protection mechanisms have already been described, little information is available on how these fungi influence the hormonal response to water stress at an organ-specific level. In this study, we evaluated the physiological and hormonal responses to water stress in above and below-ground tissues of the legume grass Trifolium repens colonized by the arbuscular mycorrhizal fungus Rhizoglomus irregulare. Plants were subjected to progressive water stress and recovery. Different leaf and root physiological parameters, as well as phytohormone levels, were quantified. Water-stressed mycorrhizal plants showed an improved water status and no photoinhibition compared to uncolonized individuals, while some stress markers like α-tocopherol and malondialdehyde content, an indicator of the extent of lipid peroxidation, transiently increased in roots, but not in leaves. Water stress protection exerted by mycorrhiza appeared to be related to a differential root-to-shoot redox signaling, probably mediated by jasmonates, and mycorrhization enhanced the production of the cytokinin trans-zeatin in both roots and leaves. Overall, our results suggest that mycorrhization affects physiological, redox and hormonal responses to water stress at an organ-specific level, which may eventually modulate the final protection of the host from water stress.
Collapse
Affiliation(s)
- David H. Fresno
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of BiologyUniversity of BarcelonaBarcelonaSpain
- Institute of Nutrition and Food Safety (INSA), Faculty of BiologyUniversity of BarcelonaBarcelonaSpain
| | - Helena Solé‐Corbatón
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of BiologyUniversity of BarcelonaBarcelonaSpain
| | - Sergi Munné‐Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of BiologyUniversity of BarcelonaBarcelonaSpain
- Institute of Nutrition and Food Safety (INSA), Faculty of BiologyUniversity of BarcelonaBarcelonaSpain
| |
Collapse
|
3
|
Ncube E, Mohale K, Nogemane N. Metabolomics as a Prospective Tool for Soybean ( Glycine max) Crop Improvement. Curr Issues Mol Biol 2022; 44:4181-4196. [PMID: 36135199 PMCID: PMC9497771 DOI: 10.3390/cimb44090287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022] Open
Abstract
Global demand for soybean and its products has stimulated research into the production of novel genotypes with higher yields, greater drought and disease tolerance, and shorter growth times. Genetic research may be the most effective way to continue developing high-performing cultivars with desirable agronomic features and improved nutritional content and seed performance. Metabolomics, which predicts the metabolic marker for plant performance under stressful conditions, is rapidly gaining interest in plant breeding and has emerged as a powerful tool for driving crop improvement. The development of increasingly sensitive, automated, and high-throughput analytical technologies, paired with improved bioinformatics and other omics techniques, has paved the way for wide characterization of genetic characteristics for crop improvement. The combination of chromatography (liquid and gas-based) with mass spectrometry has also proven to be an indisputable efficient platform for metabolomic studies, notably plant metabolic fingerprinting investigations. Nevertheless, there has been significant progress in the use of nuclear magnetic resonance (NMR), capillary electrophoresis, and Fourier-transform infrared spectroscopy (FTIR), each with its own set of benefits and drawbacks. Furthermore, utilizing multivariate analysis, principal components analysis (PCA), discriminant analysis, and projection to latent structures (PLS), it is possible to identify and differentiate various groups. The researched soybean varieties may be correctly classified by using the PCA and PLS multivariate analyses. As metabolomics is an effective method for evaluating and selecting wild specimens with desirable features for the breeding of improved new cultivars, plant breeders can benefit from the identification of metabolite biomarkers and key metabolic pathways to develop new genotypes with value-added features.
Collapse
Affiliation(s)
- Efficient Ncube
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Private Bag x 6, Florida, Johannesburg 1710, South Africa
| | | | | |
Collapse
|
4
|
Mycorrhiza-Induced Alterations in Metabolome of Medicago lupulina Leaves during Symbiosis Development. PLANTS 2021; 10:plants10112506. [PMID: 34834870 PMCID: PMC8617643 DOI: 10.3390/plants10112506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/12/2021] [Accepted: 10/22/2021] [Indexed: 01/12/2023]
Abstract
The present study is aimed at disclosing metabolic profile alterations in the leaves of the Medicago lupulina MlS-1 line that result from high-efficiency arbuscular mycorrhiza (AM) symbiosis formed with Rhizophagus irregularis under condition of a low phosphorus level in the substrate. A highly effective AM symbiosis was established in the period from the stooling to the shoot branching initiation stage (the efficiency in stem height exceeded 200%). Mycorrhization led to a more intensive accumulation of phosphates (glycerophosphoglycerol and inorganic phosphate) in M. lupulina leaves. Metabolic spectra were detected with GS-MS analysis. The application of complex mathematical analyses made it possible to identify the clustering of various groups of 320 metabolites and thus demonstrate the central importance of the carbohydrate and carboxylate-amino acid clusters. The results obtained indicate a delay in the metabolic development of mycorrhized plants. Thus, AM not only accelerates the transition between plant developmental stages but delays biochemical “maturation” mainly in the form of a lag of sugar accumulation in comparison with non-mycorrhized plants. Several methods of statistical modeling proved that, at least with respect to determining the metabolic status of host-plant leaves, stages of phenological development have priority over calendar age.
Collapse
|
5
|
Shtark O, Puzanskiy R, Avdeeva G, Yemelyanov V, Shavarda A, Romanyuk D, Kliukova M, Kirpichnikova A, Tikhonovich I, Zhukov V, Shishova M. Metabolic Alterations in Pisum sativum Roots during Plant Growth and Arbuscular Mycorrhiza Development. PLANTS 2021; 10:plants10061033. [PMID: 34063836 PMCID: PMC8224052 DOI: 10.3390/plants10061033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/04/2023]
Abstract
Intensive exchange of nutrients is a crucial part of the complex interaction between a host plant and fungi within arbuscular mycorrhizal (AM) symbiosis. For the first time, the present study demonstrates how inoculation with AMF Rhizophagus irregularis affects the pea (Pisum sativum L.) root metabolism at key stages of plant development. These correspond to days 21 (vegetation), 42 (flowering initiation), and 56 (fruiting-green pod). Metabolome profiling was carried out by means of a state-of-the-art GC-MS technique. The content shifts revealed include lipophilic compounds, sugars, carboxylates, and amino acids. The metabolic alterations were principally dependent on the stage of plant development but were also affected by the development of AM fungi, a fact which highlights interaction between symbiotic partners. The comparison of the present data with the results of leaf metabolome profiling earlier obtained did not reveal common signatures of metabolic response to mycorrhization in leaves and roots. We supposed that the feedback for the development and symbiotic interaction on the part of the supraorganismic system (root + AM fungi) was the cause of the difference between the metabolic profile shift in leaf and root cells that our examination revealed. New investigations are required to expand our knowledge of metabolome plasticity of the whole organism and/or system of organisms, and such results might be put to use for the intensification of sustainable agriculture.
Collapse
Affiliation(s)
- Oksana Shtark
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia; (D.R.); (M.K.); (I.T.); (V.Z.)
- Correspondence: (O.S.); (M.S.); Tel.: +7-812-470-5183 (O.S.); +7-812-328-9695 (M.S.)
| | - Roman Puzanskiy
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 193022 St. Petersburg, Russia; (R.P.); (A.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (G.A.); (V.Y.); (A.K.)
| | - Galina Avdeeva
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (G.A.); (V.Y.); (A.K.)
| | - Vladislav Yemelyanov
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (G.A.); (V.Y.); (A.K.)
| | - Alexey Shavarda
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 193022 St. Petersburg, Russia; (R.P.); (A.S.)
- Center for Molecular and Cell Technologies, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Daria Romanyuk
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia; (D.R.); (M.K.); (I.T.); (V.Z.)
| | - Marina Kliukova
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia; (D.R.); (M.K.); (I.T.); (V.Z.)
| | - Anastasia Kirpichnikova
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (G.A.); (V.Y.); (A.K.)
| | - Igor Tikhonovich
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia; (D.R.); (M.K.); (I.T.); (V.Z.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (G.A.); (V.Y.); (A.K.)
| | - Vladimir Zhukov
- Department of Biotechnology, All-Russia Research Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia; (D.R.); (M.K.); (I.T.); (V.Z.)
| | - Maria Shishova
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (G.A.); (V.Y.); (A.K.)
- Correspondence: (O.S.); (M.S.); Tel.: +7-812-470-5183 (O.S.); +7-812-328-9695 (M.S.)
| |
Collapse
|
6
|
Berger F, Gutjahr C. Factors affecting plant responsiveness to arbuscular mycorrhiza. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:101994. [PMID: 33450718 DOI: 10.1016/j.pbi.2020.101994] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Arbuscular mycorrhiza (AM) is an ancient, widespread symbiosis between most land plants and fungi of the Glomeromycotina, which receives increasing interest for agricultural application because it can promote plant growth and yield. The ability of plants to react to AM with changes in morphology and/or performance in terms of yield is called 'AM responsiveness'. Its amplitude depends on the plant- fungal genotype combination and the abiotic and biotic environment. A molecular understanding of AM responsiveness is key for enabling rational application of AM in agriculture, for example through targeted breeding of AM-optimised crops. However, the genetic and mechanistic underpinnings of AM responsiveness variation remain still unknown. Here, we review current knowledge on AM responsiveness, with a focus on agricultural crops, and speculate on mechanisms that may contribute to the variation in AM response.
Collapse
Affiliation(s)
- Florian Berger
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Caroline Gutjahr
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil-Ramann-Str. 4, 85354 Freising, Germany.
| |
Collapse
|