1
|
Xu C, Shen J, Chen W, Sun X, Zhang X, Liu Y, Liu X. Targeting Design of Human Anti-idiotypic Genetically Engineered Antibody for Simulating the Structure and Insecticidal Function of Bt Cry1C Toxin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21650-21666. [PMID: 39294853 DOI: 10.1021/acs.jafc.4c06376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The β-type anti-Id (Ab2β) is considered to have potential for simulating the structure and function of the antigen. In this study, a β-type anti-Id (3A7 anti-I-GEAb) of the Cry1C toxin was captured from a GEAb library. Subsequently, a higher activity of mutant (3A7 mutant 8) was obtained from the mutagenesis library based on 3A7 anti-I-GEAb. The LD50 values of 3A7 anti-I-GEAb and 3A7 mutant 8 reach up to 38.9% and 46.8% of Cry1C toxin for P. xylostella and reach up to 32.9% and 37.4% of Cry1C toxin for H. armigera. Additionally, an IC-ELISA was established based on 3A7 mutant 8 (as the coated "antigen"), with an LOD value of 0.35 ng/mL, exhibiting good accuracy and stability for detecting Cry1C toxin in spiked samples. The present β-type anti-I-GEAb not only exhibits insecticidal activity similar to Cry1C toxin, offering potential for environmentally friendly pest management, but it can also replace the Cry1C toxin structure to establish a highly sensitive and specific IC-ELISA for monitoring Cry1C toxin.
Collapse
Affiliation(s)
- Chongxin Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianxing Shen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wei Chen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaoming Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiao Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yuan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xianjin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
2
|
Dong S, Guan L, He K, Yang W, Deng W, Yuan S, Feng J. Screening of anti-idiotypic domain antibody from phage library for development of Bt Cry1A simulants. Int J Biol Macromol 2021; 183:1346-1351. [PMID: 34004200 DOI: 10.1016/j.ijbiomac.2021.05.093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 11/16/2022]
Abstract
Anti-idiotypic antibody technique is a new approach for the rapid development of insecticidal protein. In this study, anti-Cry1A polyclonal antibodies were used as antigen to screen the anti-idiotypic antibody that can simulate Cry1A toxins from a phage display human domain antibody (DAB) library. After four rounds of panning, five positive clones that have binding activities with anti-Cry1A polyclonal antibodies were obtained. Indirect competitive ELISA (IC-ELISA) results showed that the positive clone D6 showed significant inhibition for the binding of Cry1A toxins with anti-Cry1A polyclonal antibodies, and the inhibition ratio increased with the increase of D6 content. While, B3, F4, G5, C7 and the controls showed no obvious inhibition to Cry1A toxins. The results suggest that D6 is the "β" subtype anti-idiotypic antibody, which can simulate Cry1A toxins and competitive binding with anti-Cry1A polyclonal antibodies. Meanwhile, D6 had certain binding activity with the brush border membrane vesicles (BBMV) of p. xylostella, which was the receptor of Cry1A toxins. The results of bioassay showed that D6 had certain insecticidal activity, and the lethal concentration of 50% (LC50) was 976 ng/cm2. This study provides basic materials and experience for the development of Cry toxin simulants.
Collapse
Affiliation(s)
- Sa Dong
- College of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, PR China.
| | - Lingjun Guan
- College of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Kangli He
- College of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Wenchao Yang
- College of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Wei Deng
- College of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Shuzhong Yuan
- College of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Jianguo Feng
- College of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, PR China.
| |
Collapse
|
3
|
Lin M, Liu Y, Zhang X, Zhong J, Hu X, Xu C, Xie Y, Zhang C, Liang Y, Liu X, Lin J. Anti-idiotypic single-chain variable fragment antibody partially mimic the functionally spatial structure of Cry2Aa toxin. Anal Biochem 2021; 625:114222. [PMID: 33932355 DOI: 10.1016/j.ab.2021.114222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 01/12/2023]
Abstract
The anti-idiotypic antibody is widely used in the field of immunology to simulate structural features or even induce the biological activity of antigens. In this study, we obtained seven anti-idiotypic single-chain variable fragments (scFv) antibodies of Cry2Aa toxin from a phage-displayed mutant library constructed using error-prone PCR technique. A mutant designated 2-12B showed the best binding ability amongst all anti-idiotypic scFv isolates to Plutella xylostella brush border membrane vesicles (BBMVs). 2-12B and Cry2Aa toxin shared a potential receptor of polycalin in P. xylostella BBMVs. Homology modeling and molecular docking demonstrated that 2-12B and Cry2Aa toxin have seven common binding amino acid residues in polycalin. Insect bioassay results suggested that 2-12 had insecticidal efficacy against P. xylostella larvae. These results indicated that the Cry2Aa anti-idiotypic scFv antibody 2-12B partially mimicked the structure and function of Cry2Aa toxin. The anti-idiotypic scFv antibody provides the basic material for the future study of surrogate molecules or new insecticidal materials.
Collapse
Affiliation(s)
- Manman Lin
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of Life Sciences, Discipline of Microbiology, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Yuan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xiao Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jianfeng Zhong
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xiaodan Hu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of Life Sciences, Discipline of Microbiology, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Chongxin Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yajing Xie
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of Life Sciences, Discipline of Microbiology, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Cunzheng Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Ying Liang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xianjin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Johnson Lin
- School of Life Sciences, Discipline of Microbiology, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa.
| |
Collapse
|
4
|
Shi L, Yu T, Luo M, Wang H. Preparation monoclonal β-type anti-idiotype antibody of zearalenone and development of green ELISA quantitative detecting technique. Prep Biochem Biotechnol 2019; 50:419-424. [PMID: 31876440 DOI: 10.1080/10826068.2019.1703195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Immunoassay has been widely used in the screening of mycotoxins, which may be hazardous to the operator or the environment. This study was to develop a green way to measure zearalenone (ZEN) with a monoclonal β-type anti-idiotype antibody (Ab2β) against ZEN in place of ZEN standard. Six monoclonal β-type anti-idiotype antibodies were prepared. The 50% inhibitory concentration (IC50) value to ZEN of the six antibodies was between 34.45 ± 1.12-182.12 ± 15.40 nM. A green ELISA was then developed and validated. The quantitative conversion formula between ZEN and the monoclonal Ab2β against ZEN was y = 0.092x0.722, R2 = 0.990. The working range was 2.63-100.64 ng ml-1. The recovery rate in spiked feed samples was from 82.15% to 102.79%, and the within-assay and between-assay coefficient variation (CV) level were less than 10.00%. A good correlation was obtained by high-performance liquid chromatography method (HPLC) to validate the developed method.
Collapse
Affiliation(s)
- Luhuai Shi
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Colleges of Life Science and Technology, Jinan University, Guangzhou, P.R. China
| | - Tao Yu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Colleges of Life Science and Technology, Jinan University, Guangzhou, P.R. China
| | - Miner Luo
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Colleges of Life Science and Technology, Jinan University, Guangzhou, P.R. China
| | - Hong Wang
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Colleges of Life Science and Technology, Jinan University, Guangzhou, P.R. China
| |
Collapse
|
5
|
Adamson H, Nicholl A, Tiede C, Tang AA, Davidson A, Curd H, Wignall A, Ford R, Nuttall J, McPherson MJ, Johnson M, Tomlinson DC. Affimers as anti-idiotypic affinity reagents for pharmacokinetic analysis of biotherapeutics. Biotechniques 2019; 67:261-269. [DOI: 10.2144/btn-2019-0089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Therapeutic antibodies are the fastest growing class of drugs in the treatment of cancer, and autoimmune and inflammatory diseases that require the concomitant development of assays to monitor therapeutic antibody levels. Here, we demonstrate that the use of Affimer nonantibody binding proteins provides an advantage over current antibody-based detection systems. For four therapeutic antibodies, we used phage display to isolate highly specific anti-idiotypic Affimer reagents, which selectively bind to the therapeutic antibody idiotype. For each antibody target the calibration curves met US Food and Drug Administration criteria and the dynamic range compared favorably with commercially available reagents. Affimer proteins therefore represent promising anti-idiotypic reagents that are simple to select and manufacture, and that offer the sensitivity, specificity and consistency required for pharmacokinetic assays.
Collapse
Affiliation(s)
- Hope Adamson
- School of Molecular & Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Amanda Nicholl
- Avacta Life Sciences, Ash Way, Thorp Arch Estate, Wetherby, LS23 7FA, UK
| | - Christian Tiede
- School of Molecular & Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Anna A Tang
- School of Molecular & Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Alex Davidson
- Avacta Life Sciences, Ash Way, Thorp Arch Estate, Wetherby, LS23 7FA, UK
| | - Helen Curd
- Avacta Life Sciences, Ash Way, Thorp Arch Estate, Wetherby, LS23 7FA, UK
| | - Alex Wignall
- Avacta Life Sciences, Ash Way, Thorp Arch Estate, Wetherby, LS23 7FA, UK
| | - Robert Ford
- Avacta Life Sciences, Ash Way, Thorp Arch Estate, Wetherby, LS23 7FA, UK
| | - James Nuttall
- Avacta Life Sciences, Ash Way, Thorp Arch Estate, Wetherby, LS23 7FA, UK
| | - Michael J McPherson
- School of Molecular & Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Matt Johnson
- Avacta Life Sciences, Ash Way, Thorp Arch Estate, Wetherby, LS23 7FA, UK
| | - Darren C Tomlinson
- School of Molecular & Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
6
|
Oyama H, Tanaka E, Kawanaka T, Morita I, Niwa T, Kobayashi N. Anti-Idiotype scFv–Enzyme Fusion Proteins: A Clonable Analyte-Mimicking Probe for Standardized Immunoassays Targeting Small Biomarkers. Anal Chem 2013; 85:11553-9. [DOI: 10.1021/ac402868f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hiroyuki Oyama
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan
| | - Eri Tanaka
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan
| | - Tomoyo Kawanaka
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan
| | - Izumi Morita
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan
| | - Toshifumi Niwa
- Department
of Medical Technology, School of Health Sciences, Tohoku University, 2-1,
Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Norihiro Kobayashi
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan
| |
Collapse
|
7
|
Niwa T, Kobayashi T, Sun P, Goto J, Oyama H, Kobayashi N. An enzyme-linked immunometric assay for cortisol based on idiotype-anti-idiotype reactions. Anal Chim Acta 2009; 638:94-100. [PMID: 19298885 DOI: 10.1016/j.aca.2009.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 02/02/2009] [Accepted: 02/03/2009] [Indexed: 11/25/2022]
Abstract
Cortisol levels in body fluids are useful for monitoring the function of the pituitary-adrenal axis. Here, we established an "enzyme-linked immunometric assay" (a noncompetitive-type ELISA) for cortisol based on idiotype-anti-idiotype reactions. Six different anti-idiotype monoclonal antibodies that recognized the variable regions of a newly established anti-cortisol antibody were generated using hybridoma technology; these were two beta-type and four alpha-type anti-idiotype antibodies, recognizing the paratope and framework regions, respectively. An immunometric assay was established using a combination of a selected alpha-type and a selected beta-type antibody. The analyte (cortisol) was captured by an excess amount of anti-cortisol antibody immobilized on microplates, and the unoccupied paratope was saturated with the beta-type antibody. Hapten-occupied anti-cortisol antibody, with less steric hindrance, was then selectively bound by the alpha-type antibody, labeled with biotin. The amount of biotin residue on the microplates was colorimetrically monitored using a peroxidase-labeled streptavidin. This assay had an approximately threefold higher sensitivity (detection limit: 90 pg = 248 fmol cortisol) than a competitive ELISA using the same anti-cortisol antibody, as well as a practical specificity for providing reasonable determination of normal urinary cortisol levels.
Collapse
Affiliation(s)
- Toshifumi Niwa
- Department of Medical Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | |
Collapse
|