1
|
Schall N, Daubeuf F, Marsol C, Gizzi P, Frossard N, Bonnet D, Galzi JL, Muller S. A Selective Neutraligand for CXCL12/SDF-1α With Beneficial Regulatory Functions in MRL/Lpr Lupus Prone Mice. Front Pharmacol 2021; 12:752194. [PMID: 34744730 PMCID: PMC8566942 DOI: 10.3389/fphar.2021.752194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Dysregulation of CXCL12/SDF-1-CXCR4/CD184 signaling is associated with inflammatory diseases and notably with systemic lupus erythematosus. Issued from the lead molecule chalcone-4, the first neutraligand of the CXCL12 chemokine, LIT-927 was recently described as a potent analogue with improved solubility and stability. We aimed to investigate the capacity of LIT-927 to correct immune alterations in lupus-prone MRL/lpr mice and to explore the mechanism of action implemented by this small molecule in this model. We found that in contrast to AMD3100, an antagonist of CXCR4 and agonist of CXCR7, LIT-927 reduces the excessive number of several B/T lymphocyte subsets occurring in the blood of sick MRL/lpr mice (including CD3+/CD4-/CD8-/B220+ double negative T cells). In vitro, LIT-927 downregulated the overexpression of several activation markers on splenic MRL/lpr lymphocytes. It exerted effects on the CXCR4 pathway in MRL/lpr CD4+ T spleen cells. The results underline the importance of the CXCL12/CXCR4 axis in lupus pathophysiology. They indicate that neutralizing CXCL12 by the neutraligand LIT-927 can attenuate hyperactive lymphocytes in lupus. This mode of intervention might represent a novel strategy to control a common pathophysiological mechanism occurring in inflammatory diseases.
Collapse
Affiliation(s)
- Nicolas Schall
- CNRS UMR7242, Biotechnology and Cell Signaling, Ecole Supérieure de Biotechnologie de Strasbourg, Strasbourg University/Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France
| | - François Daubeuf
- CNRS UMR7200, Laboratoire d'innovation Thérapeutique, Faculté de Pharmacie, Strasbourg University/Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France.,CNRS UMS3286, Plate-forme de Chimie Biologique Intégrative de Strasbourg, Strasbourg University/ Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France
| | - Claire Marsol
- CNRS UMR7200, Laboratoire d'innovation Thérapeutique, Faculté de Pharmacie, Strasbourg University/Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France
| | - Patrick Gizzi
- CNRS UMS3286, Plate-forme de Chimie Biologique Intégrative de Strasbourg, Strasbourg University/ Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France
| | - Nelly Frossard
- CNRS UMR7200, Laboratoire d'innovation Thérapeutique, Faculté de Pharmacie, Strasbourg University/Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France
| | - Dominique Bonnet
- CNRS UMR7200, Laboratoire d'innovation Thérapeutique, Faculté de Pharmacie, Strasbourg University/Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France
| | - Jean-Luc Galzi
- CNRS UMR7242, Biotechnology and Cell Signaling, Ecole Supérieure de Biotechnologie de Strasbourg, Strasbourg University/Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France
| | - Sylviane Muller
- CNRS UMR7242, Biotechnology and Cell Signaling, Ecole Supérieure de Biotechnologie de Strasbourg, Strasbourg University/Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University, Strasbourg, France.,University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| |
Collapse
|
2
|
Ghafouri-Fard S, Shahir M, Taheri M, Salimi A. A review on the role of chemokines in the pathogenesis of systemic lupus erythematosus. Cytokine 2021; 146:155640. [PMID: 34252872 DOI: 10.1016/j.cyto.2021.155640] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022]
Abstract
Chemokines are a group of cytokines with low molecular weight that principally direct chemotaxis of target cells. They have prominent roles in the pathogenesis systemic lupus erythematosus (SLE) and related complications particularly lupus nephritis. These molecules not only induce autoimmune responses in the organs of patients, but also can amplify the induced inflammatory responses. Although chemokine family has at least 46 identified members, the role of a number of these molecules have been more clarified in SLE patients or animal models of this disorder. In the current paper, we review the role of CCL2, CCL3, CCL4, CCL11, CCL20, CXCL1, CXCL2, CXCL8, CXCL10, CXCL12 and CXCL13 in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehri Shahir
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Alireza Salimi
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|