1
|
Wang Y, Sun S, Zhao K, Du L, Wang X, He W, Gao F, Song D, Guan J. Orf virus DNA prime-protein boost strategy is superior to adenovirus-based vaccination in mice and sheep. Front Immunol 2023; 14:1077938. [PMID: 37026014 PMCID: PMC10070790 DOI: 10.3389/fimmu.2023.1077938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
Contagious ecthyma (Orf), an acute and highly contagious zoonosis, is prevalent worldwide. Orf is caused by Orf virus (ORFV), which mainly infects sheep/goats and humans. Therefore, effective and safe vaccination strategies for Orf prevention are needed. Although immunization with single-type Orf vaccines has been tested, heterologous prime-boost strategies still need to be studied. In the present study, ORFV B2L and F1L were selected as immunogens, based on which DNA, subunit and adenovirus vaccine candidates were generated. Of note, heterologous immunization strategies using DNA prime-protein boost and DNA prime-adenovirus boost in mice were performed, with single-type vaccines as controls. We have found that the DNA prime-protein boost strategy induces stronger humoral and cellular immune responses than DNA prime-adenovirus boost strategy in mice, which was confirmed by the changes in specific antibodies, lymphocyte proliferation and cytokine expression. Importantly, this observation was also confirmed when these heterologous immunization strategies were performed in sheep. In summary, by comparing the two immune strategies, we found that DNA prime-protein boost strategy can induce a better immune response, which provides a new attempt for exploring Orf immunization strategy.
Collapse
|
2
|
Bukar AM, Jesse FFA, Abdullah CAC, Noordin MM, Lawan Z, Mangga HK, Balakrishnan KN, Azmi MLM. Immunomodulatory Strategies for Parapoxvirus: Current Status and Future Approaches for the Development of Vaccines against Orf Virus Infection. Vaccines (Basel) 2021; 9:1341. [PMID: 34835272 PMCID: PMC8624149 DOI: 10.3390/vaccines9111341] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
Orf virus (ORFV), the prototype species of the parapoxvirus genus, is the causative agent of contagious ecthyma, an extremely devastating skin disease of sheep, goats, and humans that causes enormous economic losses in livestock production. ORFV is known for its ability to repeatedly infect both previously infected and vaccinated sheep due to several immunomodulatory genes encoded by the virus that temporarily suppress host immunity. Therefore, the development of novel, safe and effective vaccines against ORFV infection is an important priority. Although, the commercially licensed live-attenuated vaccines have provided partial protection against ORFV infections, the attenuated viruses have been associated with major safety concerns. In addition to safety issues, the persistent reinfection of vaccinated animals warrants the need to investigate several factors that may affect vaccine efficacy. Perhaps, the reason for the failure of the vaccine is due to the long-term adaptation of the virus in tissue culture. In recent years, the development of vaccines against ORFV infection has achieved great success due to technological advances in recombinant DNA technologies, which have opened a pathway for the development of vaccine candidates that elicit robust immunity. In this review, we present current knowledge on immune responses elicited by ORFV, with particular attention to the effects of the viral immunomodulators on the host immune system. We also discuss the implications of strain variation for the development of rational vaccines. Finally, the review will also aim to demonstrate future strategies for the development of safe and efficient vaccines against ORFV infections.
Collapse
Affiliation(s)
- Alhaji Modu Bukar
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
- Department of Science Laboratory Technology, School Agriculture and Applied Sciences, Ramat Polytechnic Maiduguri, Maiduguri 1070, Borno, Nigeria
| | - Faez Firdaus Abdullah Jesse
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | | | - Mustapha M. Noordin
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| | - Zaharaddeen Lawan
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| | - Hassana Kyari Mangga
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| | - Krishnan Nair Balakrishnan
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| | - Mohd-Lila Mohd Azmi
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| |
Collapse
|
3
|
Abstract
Contagious ecthyma (CE) is an infectious disease of small ruminants caused by a parapoxvirus of family Poxviridae subfamily Chordopoxvirinae. The disease is obviously distinguished by an establishment of scabby lesions and ulcerative formation on less hairy areas including muzzle, ears, nostril, and sometimes on genitalia. The disease is endemic in sheep and goats. The virus is transmissible to other ruminants and is a public health concern in humans. Although the disease is known as self-limiting, it may cause a significant economic threat and financial losses due to lower productivity in livestock production. Information with regard to the risk of the disease and epidemiology in most parts of the world is underreported. This paper aims to provide relevant information about the epidemiology of CE in selected regions of Europe, South America, North America, Asia, Africa, and Australia. An in-depth comprehension of virus infection, diagnoses, and management of the disease will enable farmers, researchers, veterinarians, abattoir workers, health personnel, and border controllers to improve their measures, skills, and effectiveness toward disease prevention and control, toward reducing unnecessary economic loss among farmers. A herd health program for significant improvement in management and productivity of livestock demands a well planned extension program that ought to encourage farmers to equip themselves with adequate skills for animal healthcare.
Collapse
|
4
|
Bala JA, Balakrishnan KN, Abdullah AA, Adamu L, Noorzahari MSB, May LK, Mangga HK, Ghazali MT, Mohamed RB, Haron AW, Noordin MM, Lila MAM. An association of Orf virus infection among sheep and goats with herd health programme in Terengganu state, eastern region of the peninsular Malaysia. BMC Vet Res 2019; 15:250. [PMID: 31319873 PMCID: PMC6639921 DOI: 10.1186/s12917-019-1999-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Orf virus causes a scabby skin lesions which decreases productivity in small ruminants. The unknown status of this disease in the eastern region of Peninsular Malaysia warrants a study to determine sero-prevalence of orf with regards to farmers' compliance level towards the Herd Health Program (HHP) programme. RESULTS Out of 504 animals, 115 were positive for Orf-virus antibodies. An overall prevalence rate of 22.8% indicated a high prevalence of orf disease in this region. It was observed that 25.1% (92/367) of goats were positive and 16.8% (23/137) of sheep sero-converted for Orf virus antibody. Several factors were measured for their possible association with prevalence of Orf virus infection. The prevalence was higher in LY farm, JC breed, kid and female animals, and in the presence of disease lesion. Chi-square analysis showed a significant association of three risk factors which are species, age and sex of the animals (P < 0.05). Notwithstanding, all other variables showed no significant difference (P > 0.05). Farms surveyed usually practised intensive management system, keeping animals in the shade at all time, due to limited availability of suitable land as a free-range grazing area. An interview with small holder farmers revealed a lack of awareness of the main goals of herd health programme. An overall compliance level of 42.7% was observed for all HHP parameters. Among the 14 main components of HHP modules, animal identification had recorded highest compliance level (84.62%) while milking management recorded the least compliance (- 82.69%). That explained why there was a high sporadic prevalence of Orf infection in this region. CONCLUSION Good herd health supervision is a rehearsal target to prevent an outbreak and the spread of diseases thus reduces economic losses among farmers. Therefore, a good herd health programme should be in place, in order to prevent and control disease transmission as well as to improve herd immunity.
Collapse
Affiliation(s)
- Jamilu Abubakar Bala
- Virology Unit, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia. .,Microbiology Unit, Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University Kano, P.M.B. 3011, Kano, Nigeria.
| | - Krishnan Nair Balakrishnan
- Virology Unit, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Ashwaq Ahmed Abdullah
- Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Applied Science, Taiz University, Taiz, Yemen
| | - Lawan Adamu
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Muhammad Syaafii Bin Noorzahari
- Virology Unit, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Lau Kah May
- Virology Unit, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hassana Kyari Mangga
- Virology Unit, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Science, University of Maiduguri, P.M.B 1069, Maiduguri, Borno, Nigeria
| | - Mohd Termizi Ghazali
- Jabatan Perkhidmatan Veterinar Negeri Terengganu Peti Surat 203, 20720, Kuala Terengganu, Malaysia
| | - Ramlan Bin Mohamed
- Institut Penyelidikan Haiwan, (IPH), Veterinary Research Institute, Ipoh, 59, Jalan Sultan Azlan Shah, 31400, Ipoh, Perak, Malaysia
| | - Abd Wahid Haron
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mustapha Mohamed Noordin
- Virology Unit, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Azmi Mohd Lila
- Virology Unit, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
5
|
Dermatopathology of Orf Virus (Malaysian Isolates) in Mice Experimentally Inoculated at Different Sites with and without Dexamethasone Administration. J Pathog 2018; 2018:9207576. [PMID: 30155311 PMCID: PMC6093002 DOI: 10.1155/2018/9207576] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/20/2018] [Accepted: 07/02/2018] [Indexed: 11/17/2022] Open
Abstract
Orf is a clinical manifestation of parapoxvirus infection often fatal in goats and sheep especially when they are under stress or influenced by unfavorable environment. This study investigated the pathogenicity of two Orf virus isolates (ORFV UPM1/14 and UPM2/14) and host response in mouse model by using different inoculation sites with/without prior exposure to dexamethasone. Treatments with dexamethasone served as an immunosuppressant that may mimic stress situation in affected animals. Groups of five mice were given intradermal injection of 0.2 mL of tissue culture infective dose 50 (TCID50) of UPM1/14 (Group 1) and UPM2/14 (Group 2) at the dorsum (Group 1A; Group 2A), ear pinna (Group 1B; Group 2B), and labial commissure (Group 1C; Group 2C). An inoculum 0.2 mL of UPM1/14 was administered to animals treated with dexamethasone (n=5; 5 mg/kg/day intraperitoneally) and nondexamethasone (n=5) groups at the dorsum, ear pinna, and labial commissure. No significant difference (p>0.05) was observed in the mean lesion scores among the groups of different inoculation sites or between dexamethasone-treated and nontreated groups. However, there was a significant difference (p<0.05) in the mean stratum thickness of affected skin following inoculation with UPM2/14 isolate at the ear pinna and labial commissure. Histopathology examination revealed keratosis, acanthosis, and ballooning degeneration in the skin of affected mice. Orf virus DNA was detected in the skin samples by targeting F1L and B2L virus-specific genes in polymerase chain reaction (PCR) assay. Intradermal inoculation with UPM1/14 or UPM2/14 isolate produced a mild skin lesion in mice, and there was no significant difference in orf disease manifestation despite variation of inoculation sites. Similarly, short-term dexamethasone administration gave no adverse effects on pathogenicity of orf virus isolates.
Collapse
|
6
|
Bala JA, Balakrishnan KN, Abdullah AA, Mohamed R, Haron AW, Jesse FFA, Noordin MM, Mohd-Azmi ML. The re-emerging of orf virus infection: A call for surveillance, vaccination and effective control measures. Microb Pathog 2018; 120:55-63. [PMID: 29709684 DOI: 10.1016/j.micpath.2018.04.057] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 01/01/2023]
Abstract
Orf disease is known to be enzootic among small ruminants in Asia, Africa, and some other parts of the world. The disease caused by orf virus is highly contagious among small ruminant species. Unfortunately, it has been neglected for decades because of the general belief that it only causes a self-limiting disease. On the other hand, in the past it has been reported to cause huge cumulative financial losses in livestock farming. Orf disease is characterized by localized proliferative and persistent skin nodule lesions that can be classified into three forms: generalized, labial and mammary or genitals. It can manifest as benign or malignant types. The later type of orf can remain persistent, often fatal and usually causes a serious outbreak among small ruminant population. Morbidity and mortality rates of orf are higher especially in newly infected kids and lambs. Application of antibiotics together with antipyretic and/or analgesic is highly recommended as a supportive disease management strategy for prevention of subsequent secondary microbial invasion. The presence of various exotic orf virus strains of different origin has been reported in many countries mostly due to poorly controlled cross-border virus transmission. There have been several efforts to develop orf virus vaccines and it was with variable success. The use of conventional vaccines to control orf is a debatable topic due to the concern of short term immunity development. Following re-infection in previously vaccinated animals, it is uncommon to observe the farms involved to experience rapid virus spread and disease outbreak. Meanwhile, cases of zoonosis from infected animals to animal handler are not uncommon. Despite failures to contain the spread of orf virus by the use of conventional vaccines, vaccination of animals with live orf virus is still considered as one of the best choice. The review herein described pertinent issues with regard to the development and use of potential effective vaccines as a control measure against orf virus infection.
Collapse
Affiliation(s)
- Jamilu Abubakar Bala
- Virology Unit, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia, Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia; Microbiology Unit, Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University Kano, Nigeria, P.M.B. 3011, Kano, Nigeria
| | - Krishnan Nair Balakrishnan
- Virology Unit, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia, Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Ashwaq Ahmed Abdullah
- Institute of Bioscience, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia; Department of Microbiology, Faculty of Applied Science, Taiz University, Taiz, Yemen
| | - Ramlan Mohamed
- Institut Penyelidikan Haiwan, (IPH), Veterinary Research Institute, Ipoh, 59, Jalan Sultan Azlan Shah, 31400 Ipoh, Perak, Malaysia
| | - Abd Wahid Haron
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Faez Firdaus Abdullah Jesse
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Mustapha M Noordin
- Virology Unit, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia, Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Mohd Lila Mohd-Azmi
- Virology Unit, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia, Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|