1
|
Levent AE, Tanaka M, Kumawat C, Heng C, Nikolaos S, Latka K, Miyamoto A, Komatsubara T, Arataki S, Oda Y, Shinohara K, Uotani K. Review Article: Diagnostic Paradigm Shift in Spine Surgery. Diagnostics (Basel) 2025; 15:594. [PMID: 40075840 PMCID: PMC11899683 DOI: 10.3390/diagnostics15050594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Meticulous clinical examination is essential for spinal disorders to utilize the diagnostic methods and technologies that strongly support physicians and enhance clinical practice. A significant change in the approach to diagnosing spinal disorders has occurred in the last three decades, which has enhanced a more nuanced understanding of spine pathology. Traditional radiographic methods such as conventional and functional X-rays and CT scans are still the first line in the diagnosis of spinal disorders due to their low cost and accessibility. As more advanced imaging technologies become increasingly available worldwide, there is a constantly increasing trend in MRI scans for detecting spinal pathologies and making treatment decisions. Not only do MRI scans have superior diagnostic capabilities, but they also assist surgeons in performing meticulous preoperative planning, making them currently the most widely used diagnostic tool for spinal disorders. Positron Emission Tomography (PET) can help detect inflammatory lesions, infections, and tumors. Other advanced diagnostic tools such as CT/MRI fusion image, Functional Magnetic Resonance Imaging (fMRI), Upright and Kinetic MRI, magnetic resonance spectroscopy (MRS), diffusion-weighted imaging (DWI), and diffusion tensor imaging (DTI) could play an important role when it comes to detecting more special pathologies. However, some technical difficulties in the daily praxis and their high costs act as obstacles to their further spread. Integrating artificial intelligence and advancements in data analytics and virtual reality promises to enhance spinal procedures' precision, safety, and efficacy. As these technologies continue to develop, they will play a critical role in transforming spinal surgery. This paradigm shift emphasizes the importance of continuous innovation and adaptability in improving the diagnosis and treatment of spinal disorders.
Collapse
Affiliation(s)
- Aras Efe Levent
- Department of Orthopedic Surgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan; (A.E.L.); (C.K.); (C.H.); (S.N.); (K.L.); (A.M.); (T.K.); (S.A.)
| | - Masato Tanaka
- Department of Orthopedic Surgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan; (A.E.L.); (C.K.); (C.H.); (S.N.); (K.L.); (A.M.); (T.K.); (S.A.)
| | - Chetan Kumawat
- Department of Orthopedic Surgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan; (A.E.L.); (C.K.); (C.H.); (S.N.); (K.L.); (A.M.); (T.K.); (S.A.)
- Department of Orthopedic Surgery, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi 110060, India
| | - Christian Heng
- Department of Orthopedic Surgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan; (A.E.L.); (C.K.); (C.H.); (S.N.); (K.L.); (A.M.); (T.K.); (S.A.)
| | - Salamalikis Nikolaos
- Department of Orthopedic Surgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan; (A.E.L.); (C.K.); (C.H.); (S.N.); (K.L.); (A.M.); (T.K.); (S.A.)
| | - Kajetan Latka
- Department of Orthopedic Surgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan; (A.E.L.); (C.K.); (C.H.); (S.N.); (K.L.); (A.M.); (T.K.); (S.A.)
| | - Akiyoshi Miyamoto
- Department of Orthopedic Surgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan; (A.E.L.); (C.K.); (C.H.); (S.N.); (K.L.); (A.M.); (T.K.); (S.A.)
| | - Tadashi Komatsubara
- Department of Orthopedic Surgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan; (A.E.L.); (C.K.); (C.H.); (S.N.); (K.L.); (A.M.); (T.K.); (S.A.)
| | - Shinya Arataki
- Department of Orthopedic Surgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan; (A.E.L.); (C.K.); (C.H.); (S.N.); (K.L.); (A.M.); (T.K.); (S.A.)
| | - Yoshiaki Oda
- Department of Orthopedic Surgery, Okayama University Hospital, Okayama 7000-8558, Japan; (Y.O.); (K.S.); (K.U.)
| | - Kensuke Shinohara
- Department of Orthopedic Surgery, Okayama University Hospital, Okayama 7000-8558, Japan; (Y.O.); (K.S.); (K.U.)
| | - Koji Uotani
- Department of Orthopedic Surgery, Okayama University Hospital, Okayama 7000-8558, Japan; (Y.O.); (K.S.); (K.U.)
| |
Collapse
|
2
|
Yahanda AT, Barot K, Ruiz-Cardozo MA, Pet MA, English I, Ohman JW, Sanchez LA, Hunt SR, Brogan DM, O’Keefe RJ, Albers B, Miller E, Goodwin ML, Molina CA. Rapid Manufacturing, Regulatory Approval, and Utilization of Patient-specific 3D-Printed Titanium Implants for Complex Multistage Spinal Surgeries. Global Spine J 2025:21925682251321787. [PMID: 39957684 PMCID: PMC11833801 DOI: 10.1177/21925682251321787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/16/2025] [Accepted: 02/04/2025] [Indexed: 02/18/2025] Open
Abstract
STUDY DESIGN Technical note and case series. OBJECTIVES 3D-printed implants (3DPI) for spinal surgery are a relatively recent development. We report on our experience with the rapid creation and regulatory approval of patient-specific 3DPI for use in complex spinal reconstruction, including a novel expedited turnaround time for implant creation. METHODS Four patients underwent placement of 3DPI to replace osseous anatomy during complex spinal reconstructions. These implants were created and used to replace patient-specific anatomy created by either en bloc tumor resection or by severe neurogenic spinal arthropathy. The surgical planning, implant creation, and postoperative outcomes are outlined. RESULTS All patients underwent successful implantation of 3DPI, which was confirmed on postoperative imaging at most recent follow-up. The time to plan, create, obtain regulatory approval, and use the first 3DPI was 28 days. Subsequent 3DPI could be planned, approved, and used in surgery in as little as 4-5 days, which is faster than previously-published reports. Thus, a 3DPI could be generated based on osseous defects created during stage 1 of a multistage surgical plan and implanted during a subsequent stage in an especially expedited manner. CONCLUSIONS 3DPI may be used to effectively replace patient-specific anatomy during complex spinal reconstructions, including for osseous defects that are generated after the initial surgical procedure. These 3DPI may be created, approved, and used in surgery over much faster timelines than have been previously reported. Additional cases utilizing these custom 3DPI will further elucidate their utility during complex reconstructions.
Collapse
Affiliation(s)
- Alexander T. Yahanda
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Karma Barot
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Miguel A. Ruiz-Cardozo
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Mitchell A. Pet
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Ian English
- Department of Orthopedic Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - J. Westley Ohman
- Division of Vascular Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Luis A. Sanchez
- Division of Vascular Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Steven R. Hunt
- Division of Colorectal Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - David M. Brogan
- Department of Orthopedic Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Regis J. O’Keefe
- Department of Orthopedic Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Brian Albers
- 3D Printing Center, Barnes-Jewish Hospital, St. Louis, MO, USA
| | - Evan Miller
- 3D Printing Center, Barnes-Jewish Hospital, St. Louis, MO, USA
| | - Matthew L. Goodwin
- Department of Orthopedic Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Camilo A. Molina
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| |
Collapse
|
3
|
Hajnal B, Pokorni AJ, Turbucz M, Bereczki F, Bartos M, Lazary A, Eltes PE. Clinical applications of 3D printing in spine surgery: a systematic review. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2025; 34:454-471. [PMID: 39774918 DOI: 10.1007/s00586-024-08594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 08/15/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE The objective of this systematic review is to present a comprehensive summary of existing research on the use of 3D printing in spinal surgery. METHODS The researchers conducted a thorough search of four digital databases (PubMed, Web of Science, Scopus, and Embase) to identify relevant studies published between January 1999 and December 2022. The review focused on various aspects, including the types of objects printed, clinical applications, clinical outcomes, time and cost considerations, 3D printing materials, location of 3D printing, and technologies utilized. Out of the 1620 studies initially identified and the 17 added by manual search, 105 met the inclusion criteria for this review, collectively involving 2088 patients whose surgeries involved 3D printed objects. RESULTS The studies presented a variety of 3D printed devices, such as anatomical models, intraoperative navigational templates, and customized implants. The most widely used type of objects are drill guides (53%) and anatomical models (25%) which can also be used for simulating the surgery. Custom made implants are much less frequently used (16% of papers). These devices significantly improved clinical outcomes, particularly enhancing the accuracy of pedicle screw placement. Most studies (88%) reported reduced operation times, although two noted longer times due to procedural complexities. A variety of 3DP technologies and materials were used, with STL, FDM, and SLS common for models and guides, and titanium for implants via EBM, SLM, and DMLS. Materialise software (Mimics, 3-Matic, Magics) was frequently utilized. While most studies mentioned outsourced production, in-house printing was implied in several cases, indicating a trend towards localized 3D printing in spine surgery. CONCLUSIONS 3D printing in spine surgery, a rapidly growing area of research, is predominantly used for creating drill guides for screw insertion, anatomical models, and innovative implants, enhancing clinical outcomes and reducing operative time. While cost-efficiency remains uncertain due to insufficient data, some 3D printing applications, like pedicle screw drill guides, are already widely accepted and routinely used in hospitals.
Collapse
Affiliation(s)
- Benjamin Hajnal
- In Silico Biomechanics Laboratory, National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary
- School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Agoston Jakab Pokorni
- In Silico Biomechanics Laboratory, National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary
- School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Mate Turbucz
- In Silico Biomechanics Laboratory, National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary
- School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Ferenc Bereczki
- In Silico Biomechanics Laboratory, National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary
- School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Marton Bartos
- In Silico Biomechanics Laboratory, National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary
- School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Aron Lazary
- In Silico Biomechanics Laboratory, National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary
- Department of Spine Surgery, Department of Orthopaedics, Semmelweis University, Üllői St. 26, Budapest, 1085, Hungary
| | - Peter Endre Eltes
- In Silico Biomechanics Laboratory, National Center for Spinal Disorders, Buda Health Center, Budapest, Hungary.
- Department of Spine Surgery, Department of Orthopaedics, Semmelweis University, Üllői St. 26, Budapest, 1085, Hungary.
| |
Collapse
|
4
|
Ni S, Yang R, Liu S, Hu Y. Biomechanical analysis of a newly designed and 3D printed plate-locking interbody cage: an observational study of finite element analysis. Sci Rep 2025; 15:3534. [PMID: 39875489 PMCID: PMC11775238 DOI: 10.1038/s41598-025-88151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/24/2025] [Indexed: 01/30/2025] Open
Abstract
Anterior cervical interbody fusion (ACDF) has become a classic surgical procedure for the treatment of cervical degenerative diseases, and various interbody cages are widely used in this procedure. We used 3D printing technology to produce a new type of plate-locking cage, anticipating to achieve high fusion rate with the high biomechanical stability. This study is to compare the biomechanical characteristics between a newly designed interbody cage and a conventional Zero-profile cage during ACDF using finite element analysis. The CT images of a 35-year-old healthy male were extracted and saved in DICOM format. Mimics Research 19.0, Geomagic Wrap 2017, NX12. 0, Abaqus 6.14 were used to construct the finite element models, then, titanium plate, titanium screw, cages, and the residual parts of both groups were assembled with reference to the surgical approach of ACDF (C4/5), following the successful establishment of both surgical models, a total of six boundary and loading conditions were tested, including flexion, extension, left and right bending, and left and right axial torsion. It is found that the plate stress peak of the new cage group decreased 73.78 MPa, 70.00%; 77.17 MPa, 70.67%; 59.77 MPa, 64.97%; 49.94 MPa, 58.28%; 44.55 MPa, 68.38%; 46.14 MPa, 68.00% in flexion, extension, left bending, right bending, left axial torsion and right axial torsion, respectively. There were no obvious increases of C5 upper endoplate stress peak between these two surgical models (< 50%), except 11.68 MPa, 153.08%; 6.55 MPa, 51.45%; in flexion and extension. The 3D-printed porous plate-locking cage was shown to be biomechanically stable compared to the conventional Zero-profile cage, and it is worth noticing that the stress on the plate of the new cage is less than that on screw of the conventional cage, which indicates that the risk of fracture, loosening, and prolapse of the new cage is less likely to occur.
Collapse
Affiliation(s)
- Shuai Ni
- Department of Orthopaedic Trauma, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116027, Liaoning, China
- School of Graduates, Dalian Medical University, No. 9, West Section of South Lvshun Road, Dalian, 116044, Liaoning, China
| | - Rui Yang
- School of Graduates, Dalian Medical University, No. 9, West Section of South Lvshun Road, Dalian, 116044, Liaoning, China
- Department of Orthopedics, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, No. 826, Southwestern Road, Shahekou District, Dalian, 116021, Liaoning, China
| | - Sanmao Liu
- School of Graduates, Dalian Medical University, No. 9, West Section of South Lvshun Road, Dalian, 116044, Liaoning, China
- Department of Orthopedics, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, No. 826, Southwestern Road, Shahekou District, Dalian, 116021, Liaoning, China
| | - Yunxiang Hu
- Department of Orthopaedic Trauma, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116027, Liaoning, China.
- School of Graduates, Dalian Medical University, No. 9, West Section of South Lvshun Road, Dalian, 116044, Liaoning, China.
- Department of Orthopedics, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, No. 826, Southwestern Road, Shahekou District, Dalian, 116021, Liaoning, China.
| |
Collapse
|
5
|
Ghidinelli M, Höntzsch D, Atici B, Crespan S. Evaluating the value of 3D-printed bone models with fracture fragments connected by flexible rods for training and preoperative planning. 3D Print Med 2025; 11:2. [PMID: 39812749 PMCID: PMC11737195 DOI: 10.1186/s41205-025-00250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The emergence of 3D printing has revolutionized medical training and preoperative planning. However, existing models have limitations, prompting the development of newly designed flexible 3D-printed bone fracture models. METHODS The designed flexible 3D-printed bone fracture models were evaluated by 133 trauma surgeons with different levels of experience for perceived value as educational tool or as preoperative planning tool. RESULTS The models allowed drilling and showed resistance to manipulation and sterilization. Surgeons found the flexible model helpful for teaching and planning the reduction of fractures, planning and simulating osteosynthesis, understanding fractures, visualizing fractures, and planning surgical approaches. CONCLUSIONS Flexible 3D-printed bone fracture models offer a dynamic and realistic approach to understanding complex fractures, potentially improving surgical training and preoperative planning.
Collapse
Affiliation(s)
| | | | | | - Stefano Crespan
- AO Innovation Translation Center (AO ITC), AO Foundation, Davos, Switzerland
| |
Collapse
|
6
|
Regmi M, Liu W, Liu S, Dai Y, Xiong Y, Yang J, Yang C. The evolution and integration of technology in spinal neurosurgery: A scoping review. J Clin Neurosci 2024; 129:110853. [PMID: 39348790 DOI: 10.1016/j.jocn.2024.110853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Spinal disorders pose a significant global health challenge, affecting nearly 5% of the population and incurring substantial socioeconomic costs. Over time, spinal neurosurgery has evolved from basic 19th-century techniques to today's minimally invasive procedures. The recent integration of technologies such as robotic assistance and advanced imaging has not only improved precision but also reshaped treatment paradigms. This review explores key innovations in imaging, biomaterials, and emerging fields such as AI, examining how they address long-standing challenges in spinal care, including enhancing surgical accuracy and promoting tissue regeneration. Are we at the threshold of a new era in healthcare technology, or are these innovations merely enhancements that may not fundamentally advance clinical care? We aim to answer this question by offering a concise introduction to each technology and discussing in depth its status and challenges, providing readers with a clearer understanding of its actual potential to revolutionize surgical practices.
Collapse
Affiliation(s)
- Moksada Regmi
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China; Peking University Health Science Center, Beijing 100191, China; Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou 450003, China
| | - Weihai Liu
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Shikun Liu
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Yuwei Dai
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Ying Xiong
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Jun Yang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Chenlong Yang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China; Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou 450003, China.
| |
Collapse
|
7
|
Azuero Gonzalez RA, Diaz Otero FA, Ramirez-Velandia F, Cruz Amaya O, Hortua Moreno AF, Patiño Guerrero RE, Dario Ramirez Giraldo I. Early experience using 3-D printed locking drill guides for transpedicular screw fixation in scoliosis. INTERDISCIPLINARY NEUROSURGERY 2024; 36:101956. [DOI: 10.1016/j.inat.2024.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
8
|
Hu Y, Liu S, Yang R, Wang H. Biomechanical Analysis of a Newly Proposed Surgical Combination (MIS Screw-Rod System for Indirect Decompression+ Interspinous Fusion System for long Term Spinal Stability) in Treatment of Lumbar Degenerative Diseases. World Neurosurg 2024; 184:e809-e820. [PMID: 38364897 DOI: 10.1016/j.wneu.2024.02.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
OBJECTIVE The aim of this study is to analyze the biomechanical stability of a newly proposed surgical combination (minimally invasive surgery of screw-rod system for indirect decompression + interspinous fusion system for long term spinal stability) in treatment of lumbar degenerative diseases. METHODS The three-dimensional (3D) computed tomography (CT) image data of an adult healthy male volunteer were selected. An intact model of L4/5 was further established and validated by using Mimic and 3-matic, 3D slicer, abaqus, Python. Four surgical models were constructed. The biomechanical stability among these surgical modes was compared and analyzed using finite element analysis. RESULTS The maximum von mises on fixation system in surgical models 2 and 3 exhibited comparable values. This finding suggested that the increase in interspinous fusion did not result in a significant elevation in maximum von mises on fixation system. Compared with the third surgical model, the fourth model, which received less average von mises experienced by the screw in contact with both cancellous and cortical bone. The findings indicated that the inclusion of facet joint fusion in surgical procedures might not be necessary to increase the average von Mises stress experienced by the screw in contact with both cancellous and cortical bone. CONCLUSIONS The biomechanical stability of the newly proposed surgical combination (MIS screw-rod for indirect decompression + interspinous fusion for long term spinal stability technique) was not lower than that of the other surgical combination groups, and it might not be necessary to perform facet joint fusion during the surgery.
Collapse
Affiliation(s)
- Yunxiang Hu
- School of Graduates, Dalian Medical University, Dalian City, Liaoning Province, China; Department of Orthopedics, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian City, Liaoning Province, China
| | - Sanmao Liu
- School of Graduates, Dalian Medical University, Dalian City, Liaoning Province, China; Department of Orthopedics, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian City, Liaoning Province, China
| | - Rui Yang
- School of Graduates, Dalian Medical University, Dalian City, Liaoning Province, China; Department of Orthopedics, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian City, Liaoning Province, China
| | - Hong Wang
- Department of Orthopedics, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian City, Liaoning Province, China.
| |
Collapse
|
9
|
Tappa K, Bird JE, Arribas EM, Santiago L. Multimodality Imaging for 3D Printing and Surgical Rehearsal in Complex Spine Surgery. Radiographics 2024; 44:e230116. [PMID: 38386600 PMCID: PMC10924222 DOI: 10.1148/rg.230116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/11/2023] [Accepted: 08/10/2023] [Indexed: 02/24/2024]
Abstract
Surgery is the mainstay treatment of symptomatic spinal tumors. It aids in restoring functionality, managing pain and tumor growth, and improving overall quality of life. Over the past decade, advancements in medical imaging techniques combined with the use of three-dimensional (3D) printing technology have enabled improvements in the surgical management of spine tumors by significantly increasing the precision, accuracy, and safety of the surgical procedures. For complex spine surgical cases, the use of multimodality imaging is necessary to fully visualize the extent of disease, including both soft-tissue and bone involvement. Integrating the information provided by these examinations in a cohesive manner to facilitate surgical planning can be challenging, particularly when multiple surgical specialties work in concert. The digital 3-dimensional (3D) model or 3D rendering and the 3D printed model created from imaging examinations such as CT and MRI not only facilitate surgical planning but also allow the placement of virtual and physical surgical or osteotomy planes, further enhancing surgical planning and rehearsal. The authors provide practical information about the 3D printing workflow, from image acquisition to postprocessing of a 3D printed model, as well as optimal material selection and incorporation of quality management systems, to help surgeons utilize 3D printing for surgical planning. The authors also highlight the process of surgical rehearsal, how to prescribe digital osteotomy planes, and integration with intraoperative surgical navigation systems through a case-based discussion. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Karthik Tappa
- From the Department of Breast Imaging, Division of Diagnostic Imaging
(K.T.), Department of Orthopedic Oncology, Division of Surgery (J.E.B.), and
Department of Breast Imaging, Division of Diagnostic Imaging (E.M.A., L.S.), The
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX
77030
| | - Justin E. Bird
- From the Department of Breast Imaging, Division of Diagnostic Imaging
(K.T.), Department of Orthopedic Oncology, Division of Surgery (J.E.B.), and
Department of Breast Imaging, Division of Diagnostic Imaging (E.M.A., L.S.), The
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX
77030
| | - Elsa M. Arribas
- From the Department of Breast Imaging, Division of Diagnostic Imaging
(K.T.), Department of Orthopedic Oncology, Division of Surgery (J.E.B.), and
Department of Breast Imaging, Division of Diagnostic Imaging (E.M.A., L.S.), The
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX
77030
| | - Lumarie Santiago
- From the Department of Breast Imaging, Division of Diagnostic Imaging
(K.T.), Department of Orthopedic Oncology, Division of Surgery (J.E.B.), and
Department of Breast Imaging, Division of Diagnostic Imaging (E.M.A., L.S.), The
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX
77030
| |
Collapse
|
10
|
González-López P, Kuptsov A, Gómez-Revuelta C, Fernández-Villa J, Abarca-Olivas J, Daniel RT, Meling TR, Nieto-Navarro J. The Integration of 3D Virtual Reality and 3D Printing Technology as Innovative Approaches to Preoperative Planning in Neuro-Oncology. J Pers Med 2024; 14:187. [PMID: 38392620 PMCID: PMC10890029 DOI: 10.3390/jpm14020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Our study explores the integration of three-dimensional (3D) virtual reality (VR) and 3D printing in neurosurgical preoperative planning. Traditionally, surgeons relied on two-dimensional (2D) imaging for complex neuroanatomy analyses, requiring significant mental visualization. Fortunately, nowadays advanced technology enables the creation of detailed 3D models from patient scans, utilizing different software. Afterwards, these models can be experienced through VR systems, offering comprehensive preoperative rehearsal opportunities. Additionally, 3D models can be 3D printed for hands-on training, therefore enhancing surgical preparedness. This technological integration transforms the paradigm of neurosurgical planning, ensuring safer procedures.
Collapse
Affiliation(s)
- Pablo González-López
- Department of Neurosurgery, Hospital General Universitario, 03010 Alicante, Spain
| | - Artem Kuptsov
- Department of Neurosurgery, Hospital General Universitario, 03010 Alicante, Spain
| | | | | | - Javier Abarca-Olivas
- Department of Neurosurgery, Hospital General Universitario, 03010 Alicante, Spain
| | - Roy T Daniel
- Centre Hospitalier Universitaire Vaudois, 1005 Lausanne, Switzerland
| | - Torstein R Meling
- Department of Neurosurgery, Rigshospitalet, 92100 Copenhagen, Denmark
| | - Juan Nieto-Navarro
- Department of Neurosurgery, Hospital General Universitario, 03010 Alicante, Spain
| |
Collapse
|
11
|
Lv Z, Li J, Yang Z, Li X, Yang Q, Li Z. Reconstruction after hemisacrectomy with a novel 3D-printed modular hemisacrum implant in sacral giant cell tumor of the bone. Front Bioeng Biotechnol 2023; 11:1155470. [PMID: 37200847 PMCID: PMC10185765 DOI: 10.3389/fbioe.2023.1155470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 05/20/2023] Open
Abstract
Background: There are a limited but increasing number of case reports and series describing the use of 3D-printed prostheses in bone tumor surgery. Methods: We describe a new approach to performing nerve-preserving hemisacrectomy in patients with sacral giant cell tumors with reconstruction using a novel 3D-printed patient-specific modular prosthesis. The series included four female and two male patients with a mean age of 34 years (range, 28-42 years). Surgical data, imaging assessments, tumor and functional status, implant status, and complications were retrospectively analyzed in six consecutive patients. Results: In all cases, the tumor was removed by sagittal hemisacrectomy, and the prosthesis was successfully implanted. The mean follow-up time was 25 months (range, 15-32 months). All patients in this report achieved successful surgical outcomes and symptomatic relief without significant complications. Clinical and radiological follow-up showed good results in all cases. The mean MSTS score was 27.2 (range, 26-28). The average VAS was 1 (range, 0-2). No structural failures or deep infections were detected in this study at the time of follow-up. All patients had good neurological function. Two cases had superficial wound complications. Bone fusion was good with a mean fusion time of 3.5 months (range, 3-5 months). Conclusion: These cases describe the successful use of custom 3D-printed prostheses for reconstruction after sagittal nerve-sparing hemisacrectomy with excellent clinical outcomes, osseointegration, and durability.
Collapse
Affiliation(s)
- Zhaorui Lv
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jianmin Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhiping Yang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qiang Yang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhenfeng Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- *Correspondence: Zhenfeng Li,
| |
Collapse
|
12
|
Virtual Scoliosis Surgery Using a 3D-Printed Model Based on Biplanar Radiographs. Bioengineering (Basel) 2022; 9:bioengineering9090469. [PMID: 36135015 PMCID: PMC9495694 DOI: 10.3390/bioengineering9090469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this paper is to describe a protocol that simulates the spinal surgery undergone by adolescents with idiopathic scoliosis (AIS) by using a 3D-printed spine model. Patients with AIS underwent pre- and postoperative bi-planar low-dose X-rays from which a numerical 3D model of their spine was generated. The preoperative numerical spine model was subsequently 3D printed to virtually reproduce the spine surgery. Special consideration was given to the printing materials for the 3D-printed elements in order to reflect the radiopaque and mechanical properties of typical bones most accurately. Two patients with AIS were recruited and operated. During the virtual surgery, both pre- and postoperative images of the 3D-printed spine model were acquired. The proposed 3D-printing workflow used to create a realistic 3D-printed spine suitable for virtual surgery appears to be feasible and reliable. This method could be used for virtual-reality scoliosis surgery training incorporating 3D-printed models, and to test surgical instruments and implants.
Collapse
|