1
|
Orr C, Stratton J, El-Shahawy M, Forouhar E, Peng A, Singh G, Omori K, Qi M, Kandeel F. Impact of Tacrolimus, Sirolimus, Age, and Body Mass Index on the Occurrence of Skin Cancer and Islet Dysfunction After Transplantation. Cell Transplant 2025; 34:9636897241309412. [PMID: 39780302 PMCID: PMC11713960 DOI: 10.1177/09636897241309412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Herein, we characterized the percentage of tacrolimus to the combined sirolimus and tacrolimus trough levels (tacrolimus %) observed during islet transplant-associated immune suppression therapy with post-transplant skin cancer. Although trough levels of tacrolimus and sirolimus were not different (P = 0.79, 0.73, respectively), high tacrolimus % resulted in a 1.32-fold increase in skin cancer odds when adjusting for age, sex, body mass index (BMI), and use of mycopheonlate mofetil (MMF; p = 0.039). Skin cancer patients were likely to have been older but not differ significantly (mean difference 12 years, P = 0.056), but age was significantly associated with a 1.22-fold increase in adjusted skin cancer odds (P = 0.046). BMI was inversely associated with skin cancer, with an adjusted odds ratio (OR) of 0.40 (P = 0.022). High tacrolimus % (>35) resulted in a 4.6-fold increase in skin cancer frequency, whereas sirolimus above 75% of the combined therapy led to a 5.2-fold increase in islet graft dysfunction (IGD) events/year. By calculating the maximum safe exposure (MSE) to tacrolimus % according to patient age and BMI, we found that cumulative months spent above MSE was predictive of skin cancer (1.20-fold increase, P = 0.003). Individuals exceeding the MSE for 1 year were 9.2 times more likely to develop skin cancer (P = 0.008). Results suggest that strategies targeting immunosuppression ratios based on age and BMI may minimize cancer risk while improving graft survival and function.
Collapse
Affiliation(s)
- Christopher Orr
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Jeannette Stratton
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Mohamed El-Shahawy
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Elena Forouhar
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Alice Peng
- Kidney & Pancreas Transplant Program, Cedars-Sinai Medical Center, Los Angeles, CA. USA
| | - Gagandeep Singh
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Keiko Omori
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Meirigeng Qi
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, USA
| |
Collapse
|
2
|
Raghav A, Ashraf H, Jeong GB. Engineered Extracellular Vesicles in Treatment of Type 1 Diabetes Mellitus: A Prospective Review. Biomedicines 2022; 10:3042. [PMID: 36551798 PMCID: PMC9775549 DOI: 10.3390/biomedicines10123042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2022] Open
Abstract
Insulin replacement is an available treatment for autoimmune type 1 diabetes mellitus (T1DM). There are multiple limitations in the treatment of autoimmune diseases such as T1DM by immunosuppression using drugs and chemicals. The advent of extracellular vesicle (EV)-based therapies for the treatment of various diseases has attracted much attention to the field of bio-nanomedicine. Tolerogenic nanoparticles can induce immune tolerance, especially in autoimmune diseases. EVs can deliver cargo to specific cells without restrictions. Accordingly, EVs can be used to deliver tolerogenic nanoparticles, including iron oxide-peptide-major histocompatibility complex, polyethylene glycol-silver-2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester, and carboxylated poly (lactic-co-glycolic acid) nanoparticles coupled with or encapsulating an antigen, to effectively treat autoimmune T1DM. The present work highlights the advances in exosome-based delivery of tolerogenic nanoparticles for the treatment of autoimmune T1DM.
Collapse
Affiliation(s)
- Alok Raghav
- Multidisciplinary Research Unit, Sponsored by Department of Health Research, Ministry of Health and Family Welfare, GSVM Medical College, Kanpur 208002, India
| | - Hamid Ashraf
- Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N. Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Goo-Bo Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, 155 Getbeol-ro Yeonsu-gu, Incheon 21999, Republic of Korea
| |
Collapse
|
3
|
Mahameed M, Xue S, Stefanov B, Hamri GC, Fussenegger M. Engineering a Rapid Insulin Release System Controlled By Oral Drug Administration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105619. [PMID: 35048556 PMCID: PMC8948567 DOI: 10.1002/advs.202105619] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Indexed: 05/14/2023]
Abstract
Rapid insulin release plays an essential role in maintaining blood-glucose homeostasis in mammalians. Patients diagnosed with type-I diabetes mellitus experience chronic and remarkably high blood-sugar levels, and require lifelong insulin injection therapy, so there is a need for more convenient and less invasive insulin delivery systems to increase patients' compliance and also to enhance their quality of life. Here, an endoplasmic-reticulum-localized split sec-tobacco etch virus protease (TEVp)-based rapamycin-actuated protein-induction device (RAPID) is engineered, which is composed of the rapamycin-inducible dimerization domains FK506 binding protein (FKBP) and FKBP-rapamycin binding protein fused with modified split sec-TEVp components. Insulin accumulation inside the endoplasmic reticulum (ER) is achieved through tagging its C-terminus with KDEL, an ER-retention signal, spaced by a TEVp cleavage site. In the presence of rapamycin, the split sec-TEVp-based RAPID components dimerize, regain their proteolytic activity, and remove the KDEL retention signal from insulin. This leads to rapid secretion of accumulated insulin from cells within few minutes. Using liver hydrodynamic transfection methodology, it is shown that RAPID quickly restores glucose homeostasis in type-1-diabetic (T1DM) mice treated with an oral dose of clinically licensed rapamycin. This rapid-release technology may become the foundation for other cell-based therapies requiring instantaneous biopharmaceutical availability.
Collapse
Affiliation(s)
- Mohamed Mahameed
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
| | - Shuai Xue
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
| | - Bozhidar‐Adrian Stefanov
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
| | - Ghislaine Charpin‐El Hamri
- Département Génie BiologiqueInstitut Universitaire de TechnologieUniversité Claude Bernard Lyon 1Villeurbanne CedexF‐69622France
| | - Martin Fussenegger
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
- University of BaselFaculty of Life ScienceBaselCH‐4058Switzerland
| |
Collapse
|
4
|
PPP1CA/YAP/GS/Gln/mTORC1 pathway activates retinal Müller cells during diabetic retinopathy. Exp Eye Res 2021; 210:108703. [PMID: 34280391 DOI: 10.1016/j.exer.2021.108703] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/15/2021] [Accepted: 07/15/2021] [Indexed: 01/04/2023]
Abstract
Diabetic retinopathy (DR) is a vision-loss complication caused by diabetes with high prevalence. During DR, the retinal microvascular injury and neurodegeneration derived from chronic hyperglycemia have attracted global attention to retinal Müller cells (RMCs), the major macroglia in the retina contributes to neuroprotection. Protein Phosphatase 1 Catalytic Subunit Alpha (PPP1CA) dephosphorylates the transcriptional coactivator Yes-associated protein (YAP) to promote the transcription of glutamine synthetase (GS). GS catalyzes the transformation of neurotoxic glutamate (Glu) into nontoxic glutamine (Gln) to activate the mammalian target of rapamycin complex 1 (mTORC1), which promotes the activation of RMCs. In this study, in vitro MIO-M1 cell and in vivo mouse high-fat diet and streptozotocin (STZ)-induced diabetic model to explore the role of the PPP1CA/YAP/GS/Gln/mTORC1 pathway on the activation of MRCs during DR. Results showed that PPP1CA promoted the dephosphorylation and nuclear translocation of YAP in high glucose (HG)-exposed MIO-M1 cells. YAP transcribed GS in HG-exposed MIO-M1 cells in a TEAD1-dependent and PPP1CA-dependent way. GS promoted the biosynthesis of Gln in HG-exposed MIO-M1 cells. Gln activated mTORC1 instead of mTORC2 in HG-exposed MIO-M1 cells. The proliferation and activation of HG-exposed MIO-M1 cells were PPP1CA/YAP/GS/Gln/mTORC1-dependent. Finally, RMC proliferation and activation during DR were inhibited by the PPP1CA/YAP/GS/Gln/mTORC1 blockade. The findings supplied a potential idea to protect RMCs and alleviate the development of DR.
Collapse
|
5
|
Bolla AM, Gandolfi A, Borgonovo E, Laurenzi A, Caretto A, Molinari C, Catalano RS, Bianconi E, Monti P, Sordi V, Pellegrini S, Lampasona V, Costa S, Scavini M, Bosi E, Piemonti L. Rapamycin Plus Vildagliptin to Recover β-Cell Function in Long-Standing Type 1 Diabetes: A Double-Blind, Randomized Trial. J Clin Endocrinol Metab 2021; 106:e507-e519. [PMID: 33124663 DOI: 10.1210/clinem/dgaa791] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Indexed: 02/13/2023]
Abstract
AIM The aim of this study was to investigate whether treatment with rapamycin plus vildagliptin restores β-cell function in patients with long-standing type 1 diabetes. METHODS A phase 2, single-center, randomized, double-blind, placebo-controlled study was conducted in long-standing type 1 diabetes patients randomly assigned (1:1:1) to 4 weeks of rapamycin (group 2), 4 weeks of rapamycin plus 12 weeks of vildagliptin (group 3), or double placebo (group 1). The primary outcome was the proportion of participants with a positive response to the Mixed-Meal Tolerance Test (C-peptide at 90 minutes > 0.2 nmol/L) at weeks 4 and 12. Secondary end points included insulin requirement, standard measures of glycemic control, and hormonal and immunological profile. RESULTS Fifty-five patients were randomly assigned to group 1 (n = 18), group 2 (n = 19), or group 3 (n = 18). No patient in any group showed a positive C-peptide response, and there was no significant difference at 4 and 12 weeks for the primary outcome. At 4 weeks, insulin requirement decreased from 0.54 to 0.48 U/kg/day in group 2 (P = .013), from 0.59 to 0.51 U/kg/day in group 3 (P < .001), whereas it did not change in group 1. At 12 weeks, glycated hemoglobin significantly decreased both in group 2 (from 7.3% [56 mmol/mol] to 7% [53 mmol/mol]; P = .045] and in group 3 (from 7.2% [55.5 mmol/mol] to 6.9% [52 mmol/mol]; P = .001]. Rapamycin treatment was associated with a decrease in insulin antibody titer and changes in hormonal/immunological profile. CONCLUSIONS Rapamycin reduced insulin requirement, but did not restore β-cell function in patients with long-standing type 1 diabetes.
Collapse
Affiliation(s)
- Andrea Mario Bolla
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessandra Gandolfi
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Andrea Laurenzi
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Amelia Caretto
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Chiara Molinari
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Eleonora Bianconi
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paolo Monti
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Valeria Sordi
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Silvia Pellegrini
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Vito Lampasona
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Sabrina Costa
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marina Scavini
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Emanuele Bosi
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
6
|
Samidurai A, Ockaili R, Cain C, Roh SK, Filippone SM, Kraskauskas D, Kukreja RC, Das A. Differential Regulation of mTOR Complexes with miR-302a Attenuates Myocardial Reperfusion Injury in Diabetes. iScience 2020; 23:101863. [PMID: 33319180 PMCID: PMC7725936 DOI: 10.1016/j.isci.2020.101863] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/07/2020] [Accepted: 11/20/2020] [Indexed: 01/11/2023] Open
Abstract
Persistent activation of mTOR (mammalian target of rapamycin) in diabetes increases the vulnerability of the heart to ischemia/reperfusion (I/R) injury. We show here that infusion of rapamycin (mTOR inhibitor) at reperfusion following ischemia reduced myocardial infarct size and apoptosis with restoration of cardiac function in type 1 diabetic rabbits. Likewise, treatment with rapamycin protected hyperglycemic human-pluripotent-stem-cells-derived cardiomyocytes (HG-hiPSC-CMs) following simulated ischemia (SI) and reoxygenation (RO). Phosphorylation of S6 (mTORC1 marker) was increased, whereas AKT phosphorylation (mTORC2 marker) and microRNA-302a were reduced with concomitant increase of its target, PTEN, following I/R injury in diabetic heart and HG-hiPSC-CMs. Rapamycin inhibited mTORC1 and PTEN, but augmented mTORC2 with restoration of miRNA-302a under diabetic conditions. Inhibition of miRNA-302a blocked mTORC2 and abolished rapamycin-induced protection against SI/RO injury in HG-hiPSC-CMs. We conclude that rapamycin attenuates reperfusion injury in diabetic heart through inhibition of PTEN and mTORC1 with restoration of miR-302a-mTORC2 signaling. miR-302a and AKT phosphorylation are suppressed in post-ischemic diabetic heart Negative regulator of insulin signaling, PTEN, is induced after ischemia reperfusion miRNA-302a-mimic abolishes ischemic injury in hyperglycemic human iPS cardiocytes Rapamycin treatment restores miR-302a-mTORC2 cardioprotective signaling in diabetes
Collapse
Affiliation(s)
- Arun Samidurai
- Division of Cardiology, Pauley Heart Center, Box 980204, Virginia Commonwealth University Medical Center, 1101 East Marshall Street, Sanger Hall, Room 7020d & 7020b, Richmond, VA 23298-0204, USA
| | - Ramzi Ockaili
- Division of Cardiology, Pauley Heart Center, Box 980204, Virginia Commonwealth University Medical Center, 1101 East Marshall Street, Sanger Hall, Room 7020d & 7020b, Richmond, VA 23298-0204, USA
| | - Chad Cain
- Division of Cardiology, Pauley Heart Center, Box 980204, Virginia Commonwealth University Medical Center, 1101 East Marshall Street, Sanger Hall, Room 7020d & 7020b, Richmond, VA 23298-0204, USA
| | - Sean K Roh
- Division of Cardiology, Pauley Heart Center, Box 980204, Virginia Commonwealth University Medical Center, 1101 East Marshall Street, Sanger Hall, Room 7020d & 7020b, Richmond, VA 23298-0204, USA
| | - Scott M Filippone
- Division of Cardiology, Pauley Heart Center, Box 980204, Virginia Commonwealth University Medical Center, 1101 East Marshall Street, Sanger Hall, Room 7020d & 7020b, Richmond, VA 23298-0204, USA
| | - Donatas Kraskauskas
- Division of Cardiology, Pauley Heart Center, Box 980204, Virginia Commonwealth University Medical Center, 1101 East Marshall Street, Sanger Hall, Room 7020d & 7020b, Richmond, VA 23298-0204, USA
| | - Rakesh C Kukreja
- Division of Cardiology, Pauley Heart Center, Box 980204, Virginia Commonwealth University Medical Center, 1101 East Marshall Street, Sanger Hall, Room 7020d & 7020b, Richmond, VA 23298-0204, USA
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Box 980204, Virginia Commonwealth University Medical Center, 1101 East Marshall Street, Sanger Hall, Room 7020d & 7020b, Richmond, VA 23298-0204, USA
| |
Collapse
|
7
|
Li J, Zhang Y, Liang XF, He S, Tang S, Li L, Chen X. mTOR - Mediated protein synthesis by inhibiting protein catabolism in Chinese perch (Siniperca chuatsi). Biochem Biophys Res Commun 2020; 533:23-29. [PMID: 32919703 DOI: 10.1016/j.bbrc.2020.08.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022]
Abstract
Activation of the mechanistic target of rapamycin (mTOR) pathway is known to promote protein synthesis by enhancing mRNA translation. However, there have been few literatures on the effect of mTOR on protein metabolism in non-mammals. The main source of ammonia in fish comes from protein catabolism. The key step of protein catabolism involves the deamination and/or transamination of amino acids. This study is aimed to explore the mechanism underlying mTOR pathway influencing protein retention from the perspective of protein catabolism. Chinese perch were fasted for 24 h and divided into 4 groups randomly before intracerebroventricular (ICV) injection: (1) control group for leucine; (2) leucine group; (3) control group for leucine and rapamycin; (4) leucine and rapamycin group. Food intake was equivalent between each control and treatment groups at each time point (0.5, 4, 12 and 24 h post-injection). Ammonia-N excretion rate, blood glucose, S6 phosphorylation level, and expression of relative genes of protein catabolism (GDH, AMPD, AST, ALT) were determined. The results indicated that the pS6 level was increased, and that the ammonia-N excretion rate, blood glucose, and mRNA level of protein catabolism genes (GDH and AMPD) were significantly decreased after injection with leucine, while those changes were reversed after injection with leucine and rapamycin. Our study not only reveals the mechanism by which mTOR mediates protein synthesis by inhibiting protein catabolism in Chinese perch, but also provides reference for improving the utilization of feed protein.
Collapse
Affiliation(s)
- Jiao Li
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/ Hubei Engineering Technology Research Center for Fish Breeding and Healthy Aquaculture, Wuhan, 430070, China
| | - Yanpeng Zhang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/ Hubei Engineering Technology Research Center for Fish Breeding and Healthy Aquaculture, Wuhan, 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/ Hubei Engineering Technology Research Center for Fish Breeding and Healthy Aquaculture, Wuhan, 430070, China.
| | - Shan He
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/ Hubei Engineering Technology Research Center for Fish Breeding and Healthy Aquaculture, Wuhan, 430070, China
| | - Shulin Tang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/ Hubei Engineering Technology Research Center for Fish Breeding and Healthy Aquaculture, Wuhan, 430070, China
| | - Ling Li
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/ Hubei Engineering Technology Research Center for Fish Breeding and Healthy Aquaculture, Wuhan, 430070, China
| | - Xu Chen
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/ Hubei Engineering Technology Research Center for Fish Breeding and Healthy Aquaculture, Wuhan, 430070, China
| |
Collapse
|
8
|
Emerging Role of mTOR Signaling-Related miRNAs in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6141902. [PMID: 30305865 PMCID: PMC6165581 DOI: 10.1155/2018/6141902] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/04/2018] [Indexed: 12/21/2022]
Abstract
Mechanistic/mammalian target of rapamycin (mTOR), an atypical serine/threonine kinase of the phosphoinositide 3-kinase- (PI3K-) related kinase family, elicits a vital role in diverse cellular processes, including cellular growth, proliferation, survival, protein synthesis, autophagy, and metabolism. In the cardiovascular system, the mTOR signaling pathway integrates both intracellular and extracellular signals and serves as a central regulator of both physiological and pathological processes. MicroRNAs (miRs), a class of short noncoding RNA, are an emerging intricate posttranscriptional modulator of critical gene expression for the development and maintenance of homeostasis across a wide array of tissues, including the cardiovascular system. Over the last decade, numerous studies have revealed an interplay between miRNAs and the mTOR signaling circuit in the different cardiovascular pathophysiology, like myocardial infarction, hypertrophy, fibrosis, heart failure, arrhythmia, inflammation, and atherosclerosis. In this review, we provide a comprehensive state of the current knowledge regarding the mechanisms of interactions between the mTOR signaling pathway and miRs. We have also highlighted the latest advances on mTOR-targeted therapy in clinical trials and the new perspective therapeutic strategies with mTOR-targeting miRs in cardiovascular diseases.
Collapse
|