1
|
Xu H, Chen R, Hou X, Li N, Han Y, Ji S. The clinical potential of 1,5-anhydroglucitol as biomarker in diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1471577. [PMID: 39544236 PMCID: PMC11560458 DOI: 10.3389/fendo.2024.1471577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/16/2024] [Indexed: 11/17/2024] Open
Abstract
A crucial measure of diabetes management is to monitor blood glucose, which often requires continuous blood collection, leading to economic burden and discomfort. Blood glucose and glycated hemoglobin A1c serve as traditional indicators of glucose monitoring. But now glycated albumin, fructosamine, and 1,5-anhydroglucitol (1,5-AG) have been gaining more attention. 1,5-AG is a chemically stable monosaccharide that exists in the human body. Its serum concentration remains stable when blood glucose levels are normal. However, it decreases when blood glucose exceeds the renal glucose threshold. Studies have shown that 1.5-AG reflects blood glucose changes in 1 to 2 weeks; therefore, decreased levels of serum 1,5-AG can serve as a clinical indicator of short-term blood glucose disturbances. Recent studies have shown that 1,5-AG can be used not only for the screening and managing of diabetes but also for predicting diabetes-related adverse events and islet β cell function in prediabetic patients. In addition, saliva 1,5-AG demonstrates potential value in the screening and diagnosis of diabetes. This review focuses on the biological characteristics, detection methods, and clinical application of 1,5-AG to promote understanding and applicable research of 1,5-AG in the future.
Collapse
Affiliation(s)
- Haiying Xu
- Center of Molecular Medicine, Department of Basic Medicine, Shu-Qing Medical College, Zhengzhou, Henan, China
| | - Renyin Chen
- Center of Molecular Medicine, Department of Basic Medicine, Shu-Qing Medical College, Zhengzhou, Henan, China
| | - Xiaoli Hou
- Center of Molecular Medicine, Department of Basic Medicine, Shu-Qing Medical College, Zhengzhou, Henan, China
| | - Na Li
- Center of Molecular Medicine, Department of Basic Medicine, Shu-Qing Medical College, Zhengzhou, Henan, China
| | - Yanwei Han
- Hospital Laboratory Department, Rehabilitation Hospital of Shu-Qing Medical College, Zhengzhou, Henan, China
| | - Shaoping Ji
- Center of Molecular Medicine, Department of Basic Medicine, Shu-Qing Medical College, Zhengzhou, Henan, China
- Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng, Henan, China
| |
Collapse
|
2
|
Ying L, Ma X, Shen Y, Lu J, Lu W, Zhu W, Wang Y, Bao Y, Zhou J. Serum 1,5-Anhydroglucitol to Glycated Albumin Ratio Can Help Early Distinguish Fulminant Type 1 Diabetes Mellitus from Newly Onset Type 1A Diabetes Mellitus. J Diabetes Res 2020; 2020:1243630. [PMID: 32280712 PMCID: PMC7115050 DOI: 10.1155/2020/1243630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Fulminant type 1 diabetes mellitus (FT1DM) onsets abruptly and usually occurs within 1 week after the onset of hyperglycemic symptoms. Glycated albumin (GA) and 1,5-anhydroglucitol (1,5-AG) are indicators that reflect short-term glucose levels. This study was aimed at investigating whether the 1,5-AG/GA index (AGI) is a suitable indicator for early FT1DM identification. METHODS A total of 226 subjects were enrolled, all with glycated hemoglobin A1c (HbA1c) < 8.7%. FT1DM was diagnosed based on the 2012 Japan Diabetes Society criteria. RESULTS The AGI level was 0.54 (0.17-1.36) in the whole group. It was lower in FT1DM patients (0.16 [0.10-0.25]). Among the participants whose HbA1c did not exceed 7.0%, the AGI of FT1DM decreased significantly compared to type 1A diabetes (T1ADM) and latent autoimmune diabetes in adults (LADA) patients (0.16 [0.12-0.26] vs. 0.46 [0.24-0.72] vs. 0.46 [0.24-0.72] P < 0.05). The receiver operating characteristic (ROC) curve showed that AGI can be used to distinguish FT1DM and T1ADM patients with HbA1c < 8.7%. Diagnosing FT1DM based on AGI ≤ 0.3 only can help narrow down suspected FT1DM by up to 26.87%. If we diagnosed FT1DM when AGI was ≤0.3 and HbA1c was ≤7.0%, the success rate further increased to 86.57%, among which 85.00% of FT1DM and 87.23% of T1ADM patients were successfully identified. Therefore, using the combination criteria of AGI and HbA1c would improve the differential diagnosis efficacy by 61.11% compared with the AGI criterion only. CONCLUSION AGI can help facilitate the early differential diagnosis of FT1DM and T1ADM when HbA1c < 8.7%, with an optimal cut-off point of 0.3.
Collapse
Affiliation(s)
- Lingwen Ying
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xiaojing Ma
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yun Shen
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jingyi Lu
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wei Lu
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wei Zhu
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yufei Wang
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jian Zhou
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
3
|
Shen Y, Si Y, Lu J, Ma X, Zhang L, Mo Y, Lu W, Zhu W, Bao Y, Hu G, Zhou J. Association between 1,5-Anhydroglucitol and Acute C Peptide Response to Arginine among Patients with Type 2 Diabetes. J Diabetes Res 2020; 2020:4243053. [PMID: 32775460 PMCID: PMC7391082 DOI: 10.1155/2020/4243053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/06/2020] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE The aim of this study was to explore the association of 1,5-anhydroglucitol with acute C peptide response (ACPR) to arginine among patients with type 2 diabetes. METHODS Patients with type 2 diabetes were enrolled from the Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital. ACPR was assessed using arginine stimulation test. Decreased β-cell function was defined as ACPR < 2.1. Multivariable logistic regression models were used to demonstrate the association between 1,5-anhydroglucitol and decreased β-cell function. RESULTS Finally, 623 patients with type 2 diabetes were enrolled into the analysis. Multivariable-adjusted odds ratios for decreased β-cell function across quartiles of 1,5-anhydroglucitol were 1.00, 0.47 (95% confidence interval (CI) 0.23-0.99), 0.41 (95% CI 0.20-0.84), and 0.27 (95% CI 0.13-0.57) (P trend = 0.042), respectively. When 1,5-anhydroglucitol was considered as a continuous variable after logarithm, the corresponding odds ratio was 0.40 (95% CI 0.23-0.71). CONCLUSIONS We demonstrated a dose-response linear association between 1,5-anhydroglucitol and ACPR. 1,5-Anhydroglucitol was likely to be associated with β-cell function. Further analysis with large sample size and prospective study design is warranted to validate our findings.
Collapse
Affiliation(s)
- Yun Shen
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China 200233
| | - Yiming Si
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China 200233
| | - Jingyi Lu
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China 200233
| | - Xiaojing Ma
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China 200233
| | - Lei Zhang
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China 200233
| | - Yifei Mo
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China 200233
| | - Wei Lu
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China 200233
| | - Wei Zhu
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China 200233
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China 200233
| | - Gang Hu
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA 70806
| | - Jian Zhou
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China 200233
| |
Collapse
|