1
|
Zariņa KZ, Pilmane M, Pētersons A. Immunomodulatory Tissue Factors in the Gallbladder Walls of Pediatric Patients with Chronic Calculous Cholecystitis. CHILDREN (BASEL, SWITZERLAND) 2025; 12:205. [PMID: 40003307 PMCID: PMC11854828 DOI: 10.3390/children12020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND The rising rates of gallstones and cholecystectomy in pediatric populations underscore the increasing concern regarding chronic cholecystitis. However, the morphopathogenesis of pediatric calculous cholecystitis is still not well understood. This study aimed to determine the expression and distribution of immunomodulatory factors interleukin-12 (IL-12), interleukin-13 (IL-13), interleukin-1β (IL-1β), sonic hedgehog protein (SHH), nuclear factor NF-kappa-B p65 subunit (NFkBp65), and heat shock protein 60 (HSP60) in the gallbladder walls of pediatric patients with chronic calculous cholecystitis. METHODS In total, 11 gallbladder samples were collected from pediatric patients with calculous cholecystitis during cholecystectomy, while 5 healthy gallbladder samples served as controls. IL-12, IL-13, IL-1β, SHH, NFkBp65, and HSP60 were detected by immunohistochemistry. The number of positive structures in gallbladder wall epithelium, vasculature, and inflammatory infiltrate was assessed semi-quantitatively by microscopy. A Mann-Whitney U test and Spearman's rank-order correlation coefficient were calculated. RESULTS Statistically significant differences were observed between patient and control samples in the expression of IL-1β, SHH, and NFkBp65 in the epithelium, as well as in the expression of IL-12, SHH, and HSP60 in the blood vessels. The expression of IL-1β was stronger in the epithelium of controls, while other markers were more prominent in patient samples. CONCLUSIONS An increased number of NFkBp65, IL-12, and HSP60 positive cells in patient gallbladder tissue suggests a significant role of these tissue factors in driving immune modulation and sustaining the inflammation in pediatric chronic calculous cholecystitis. The noticeable expression of SHH in patient gallbladder tissue indicates its part in tissue regeneration and repair processes, as well as in modulating inflammation and vascular responses in calculous cholecystitis. The significant positive correlations between the factors studied highlight the importance of their coordinated interaction and intricate crosstalk in the morphopathogenesis of calculous cholecystitis.
Collapse
Affiliation(s)
- Kaiva Zīle Zariņa
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, LV-1010 Riga, Latvia
| | - Māra Pilmane
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, LV-1010 Riga, Latvia
| | - Aigars Pētersons
- Department of Pediatric Surgery, Riga Stradins University, Dzirciema Street 16, LV-1007 Riga, Latvia
| |
Collapse
|
2
|
Bojan A, Pricop C, Ciocoiu M, Vladeanu MC, Bararu Bojan I, Badulescu OV, Badescu MC, Plesoianu CE, Halitchi DI, Foia LG. Environmental and Metabolic Risk Factors Linked to Gallbladder Dysplasia. Metabolites 2024; 14:273. [PMID: 38786750 PMCID: PMC11123122 DOI: 10.3390/metabo14050273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Gallbladder disorders encompass a spectrum from congenital anomalies to inflammatory and neoplastic conditions, frequently requiring surgical intervention. Epithelial abnormalities like adenoma and metaplasia have the potential to progress to carcinoma, emphasizing the importance of histopathological assessment for early detection of malignancy. Gallbladder cancer (GBC) may be incidentally discovered during cholecystectomy for presumed benign conditions, underscoring the need for a thorough examination. However, the lack of clarity regarding the molecular mechanisms of GBC has impeded diagnostic and therapeutic advancements. Timely detection is crucial due to GBC's aggressive nature and poor prognosis. Chronic inflammation plays a central role in carcinogenesis, causing DNA damage and oncogenic alterations due to persistent insults. Inflammatory cytokines and microRNAs are among the various mediators contributing to this process. Gallbladder calcifications, particularly stippled ones, may signal malignancy and warrant preemptive removal. Molecular pathways involving mutations in oncogenes and tumor suppressor genes drive GBC pathogenesis, with proposed sequences such as gallstone-induced inflammation leading to carcinoma formation. Understanding these mechanisms, alongside evaluating mucin characteristics and gene mutations, can deepen comprehension of GBC's pathophysiology. This, in turn, facilitates the identification of high-risk individuals and the development of improved treatment strategies, ultimately enhancing patient outcomes. Thus, in this review, our aim has been to underscore the primary mechanisms underlying the development of gallbladder dysplasia and neoplasia.
Collapse
Affiliation(s)
- Andrei Bojan
- Department of Surgical Sciences, University of Medicine and Pharmacy Grigore T. Popa, 700115 Iasi, Romania (C.P.)
| | - Catalin Pricop
- Department of Surgical Sciences, University of Medicine and Pharmacy Grigore T. Popa, 700115 Iasi, Romania (C.P.)
| | - Manuela Ciocoiu
- Department of Pathophysiology, University of Medicine and Pharmacy Grigore T. Popa, 700115 Iasi, Romania; (M.C.V.)
| | - Maria Cristina Vladeanu
- Department of Pathophysiology, University of Medicine and Pharmacy Grigore T. Popa, 700115 Iasi, Romania; (M.C.V.)
| | - Iris Bararu Bojan
- Department of Pathophysiology, University of Medicine and Pharmacy Grigore T. Popa, 700115 Iasi, Romania; (M.C.V.)
| | - Oana Viola Badulescu
- Department of Pathophysiology, University of Medicine and Pharmacy Grigore T. Popa, 700115 Iasi, Romania; (M.C.V.)
| | - Minerva Codruta Badescu
- Department of Internal Medicine, University of Medicine and Pharmacy Grigore T. Popa, 700115 Iasi, Romania; (M.C.B.)
| | - Carmen Elena Plesoianu
- Department of Internal Medicine, University of Medicine and Pharmacy Grigore T. Popa, 700115 Iasi, Romania; (M.C.B.)
| | - Dan Iliescu Halitchi
- Department of Internal Medicine, University of Medicine and Pharmacy Grigore T. Popa, 700115 Iasi, Romania; (M.C.B.)
| | - Liliana Georgeta Foia
- Department of Biochemistry, University of Medicine and Pharmacy Grigore T. Popa, 700115 Iasi, Romania;
| |
Collapse
|
3
|
Rodas F, Vidal-Vidal JA, Herrera D, Brown-Brown DA, Vera D, Veliz J, Püschel P, Erices JI, Sánchez Hinojosa V, Tapia JC, Silva-Pavez E, Quezada-Monrás C, Mendoza-Soto P, Salazar-Onfray F, Carrasco C, Niechi I. Targeting the Endothelin-1 pathway to reduce invasion and chemoresistance in gallbladder cancer cells. Cancer Cell Int 2023; 23:318. [PMID: 38072958 PMCID: PMC10710704 DOI: 10.1186/s12935-023-03145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND Gallbladder cancer (GBC) is a prevalent and deadly biliary tract carcinoma, often diagnosed at advanced stages with limited treatment options. The 5-year survival rate varies widely from 4 to 60%, mainly due to differences in disease stage detection. With only a small fraction of patients having resectable tumors and a high incidence of metastasis, advanced GBC stages are characterized by significant chemoresistance. Identification of new therapeutic targets is crucial, and recent studies have shown that the Endothelin-1 (ET-1) signaling pathway, involving ETAR and/or ETBR receptors (ETRs), plays a crucial role in promoting tumor aggressiveness in various cancer models. Blocking one or both receptors has been reported to reduce invasiveness and chemoresistance in cancers like ovarian, prostate, and colon. Furthermore, transcriptomic studies have associated ET-1 levels with late stages of GBC; however, it remains unclear whether its signaling or its inhibition has implications for its aggressiveness. Although the role of ET-1 signaling in gallbladder physiology is minimally understood, its significance in other tumor models leads us to hypothesize its involvement in GBC malignancy. RESULTS In this study, we investigated the expression of ET-1 pathway proteins in three GBC cell lines and a primary GBC culture. Our findings demonstrated that both ETAR and ETBR receptors are expressed in GBC cells and tumor samples. Moreover, we successfully down-regulated ET-1 signaling using a non-selective ETR antagonist, Macitentan, which resulted in reduced migratory and invasive capacities of GBC cells. Additionally, Macitentan treatment chemosensitized the cells to Gemcitabine, a commonly used therapy for GBC. CONCLUSION For the first time, we reveal the role of the ET-1 pathway in GBC cells, providing insight into the potential therapeutic targeting of its receptors to mitigate invasion and chemoresistance in this cancer with limited treatment options. These findings pave the way for further exploration of Macitentan or other ETR antagonists as potential therapeutic strategies for GBC management. In summary, our study represents a groundbreaking contribution to the field by providing the first evidence of the ET 1 pathway's pivotal role in modulating the behavior and aggressiveness of GBC cells, shedding new light on potential therapeutic targets.
Collapse
Affiliation(s)
- Francisco Rodas
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Jetzabel A Vidal-Vidal
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Daniela Herrera
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - David A Brown-Brown
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Diego Vera
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Joaquín Veliz
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Pilar Püschel
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - José I Erices
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Verónica Sánchez Hinojosa
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Julio C Tapia
- Laboratorio de transformación celular, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 8380453, Santiago, Chile
| | - Eduardo Silva-Pavez
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Bellavista, Santiago, Chile
| | - Claudia Quezada-Monrás
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute on Immunology and Immunotherapy, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Mendoza-Soto
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Flavio Salazar-Onfray
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, 8380453, Santiago, Chile
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, 8380453, Santiago, Chile
| | - Cristian Carrasco
- Subdepartamento de Anatomía Patológica, Hospital Base de Valdivia, 5090000, Valdivia, Chile
| | - Ignacio Niechi
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
- Millennium Institute on Immunology and Immunotherapy, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
4
|
Canale M, Monti M, Rapposelli IG, Ulivi P, Sullo FG, Bartolini G, Tiberi E, Frassineti GL. Molecular Targets and Emerging Therapies for Advanced Gallbladder Cancer. Cancers (Basel) 2021; 13:5671. [PMID: 34830826 PMCID: PMC8616432 DOI: 10.3390/cancers13225671] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/07/2023] Open
Abstract
Biliary tract cancers (BTCs), for their low incidence, have been often considered together. Gallbladder cancer (GBC) is the most common biliary tract malignancy, characterized by late diagnosis and poor prognosis, and although it is considered a rare tumor in western countries, other areas of the world show considerable incidence rates. In 2010, results from the large phase III ABC-02 clinical trial on GBC identified the gemcitabine and cisplatin combination as the most effective first-line regimen for both GBC and other BTCs. Since then, various systemic therapies have proven active in BTCs in both first- and second-line settings. Molecular profiling has highlighted important genetic differences between GBC and other BTCs, opening new ways for targeted therapy in advanced disease where standard chemotherapies show marginal benefit. Genome-wide data analysis have shown that GBC molecular landscape offer possible strategies for precision medicine approaches, and a better molecular understanding of the GBC is needed to better stratify patients for treatment. In this review, we discuss the molecular targetable agents for GBC, including the results that emerged by clinical trials exploring new treatment strategies.
Collapse
Affiliation(s)
- Matteo Canale
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (P.U.)
| | - Manlio Monti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (I.G.R.); (F.G.S.); (G.B.); (E.T.); (G.L.F.)
| | - Ilario Giovanni Rapposelli
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (I.G.R.); (F.G.S.); (G.B.); (E.T.); (G.L.F.)
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (P.U.)
| | - Francesco Giulio Sullo
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (I.G.R.); (F.G.S.); (G.B.); (E.T.); (G.L.F.)
| | - Giulia Bartolini
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (I.G.R.); (F.G.S.); (G.B.); (E.T.); (G.L.F.)
| | - Elisa Tiberi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (I.G.R.); (F.G.S.); (G.B.); (E.T.); (G.L.F.)
| | - Giovanni Luca Frassineti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (I.G.R.); (F.G.S.); (G.B.); (E.T.); (G.L.F.)
| |
Collapse
|
5
|
Brägelmann J, Barahona Ponce C, Marcelain K, Roessler S, Goeppert B, Gallegos I, Colombo A, Sanhueza V, Morales E, Rivera MT, de Toro G, Ortega A, Müller B, Gabler F, Scherer D, Waldenberger M, Reischl E, Boekstegers F, Garate-Calderon V, Umu SU, Rounge TB, Popanda O, Lorenzo Bermejo J. Epigenome-Wide Analysis of Methylation Changes in the Sequence of Gallstone Disease, Dysplasia, and Gallbladder Cancer. Hepatology 2021; 73:2293-2310. [PMID: 33020926 DOI: 10.1002/hep.31585] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Gallbladder cancer (GBC) is a highly aggressive malignancy of the biliary tract. Most cases of GBC are diagnosed in low-income and middle-income countries, and research into this disease has long been limited. In this study we therefore investigate the epigenetic changes along the model of GBC carcinogenesis represented by the sequence gallstone disease → dysplasia → GBC in Chile, the country with the highest incidence of GBC worldwide. APPROACH AND RESULTS To perform epigenome-wide methylation profiling, genomic DNA extracted from sections of formalin-fixed, paraffin-embedded gallbladder tissue was analyzed using Illumina Infinium MethylationEPIC BeadChips. Preprocessed, quality-controlled data from 82 samples (gallstones n = 32, low-grade dysplasia n = 13, high-grade dysplasia n = 9, GBC n = 28) were available to identify differentially methylated markers, regions, and pathways as well as changes in copy number variations (CNVs). The number and magnitude of epigenetic changes increased with disease development and predominantly involved the hypermethylation of cytosine-guanine dinucleotide islands and gene promoter regions. The methylation of genes implicated in Wnt signaling, Hedgehog signaling, and tumor suppression increased with tumor grade. CNVs also increased with GBC development and affected cyclin-dependent kinase inhibitor 2A, MDM2 proto-oncogene, tumor protein P53, and cyclin D1 genes. Gains in the targetable Erb-B2 receptor tyrosine kinase 2 gene were detected in 14% of GBC samples. CONCLUSIONS Our results indicate that GBC carcinogenesis comprises three main methylation stages: early (gallstone disease and low-grade dysplasia), intermediate (high-grade dysplasia), and late (GBC). The identified gradual changes in methylation and CNVs may help to enhance our understanding of the mechanisms underlying this aggressive disease and eventually lead to improved treatment and early diagnosis of GBC.
Collapse
Affiliation(s)
- Johannes Brägelmann
- Statistical Genetics Research Group, Institute of Medical Biometry and Informatic, University of Heidelberg, Heidelberg, Germany.,Molecular Pathology, Institute of Pathology & Department of Translational Genomics, University Hospital of Cologne, Cologne, Germany.,Mildred Scheel School of Oncology, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Carol Barahona Ponce
- Statistical Genetics Research Group, Institute of Medical Biometry and Informatic, University of Heidelberg, Heidelberg, Germany.,Department of Basic and Clinical Oncology, Medical Faculty, University of Chile, Santiago, Chile
| | - Katherine Marcelain
- Department of Basic and Clinical Oncology, Medical Faculty, University of Chile, Santiago, Chile
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Benjamin Goeppert
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ivan Gallegos
- Servicio de Anatomía Patológica, Hospital Clínico de la Universidad de Chile, Santiago, Chile
| | - Alicia Colombo
- Department of Basic and Clinical Oncology, Medical Faculty, University of Chile, Santiago, Chile.,Servicio de Anatomía Patológica, Hospital Clínico de la Universidad de Chile, Santiago, Chile
| | - Verónica Sanhueza
- Servicio de Anatomía Patológica, Hospital Padre Hurtado, Santiago, Chile
| | - Erik Morales
- Facultad de Medicina, Universidad Catolica del Maule & Unidad de Anatomia Patologica del Hospital Regional de Talca, Talca, Chile
| | | | - Gonzalo de Toro
- Escuela de Tecnologia Medica, Universidad Austral de Chile sede Puerto Montt & Servicio de Anatomía Patológica, Hospital de Puerto Montt, Puerto Montt, Chile
| | - Alejandro Ortega
- Servicio de Anatomía Patológica, Hospital Regional, Arica, Chile
| | - Bettina Müller
- Servicio de Oncología Médica, Instituto Nacional del Cáncer, Santiago, Chile
| | - Fernando Gabler
- Unidad de Anatomia Patologica, Hospital San Borja Arriaran, Santiago, Chile
| | - Dominique Scherer
- Statistical Genetics Research Group, Institute of Medical Biometry and Informatic, University of Heidelberg, Heidelberg, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology and Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Eva Reischl
- Research Unit of Molecular Epidemiology and Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Felix Boekstegers
- Statistical Genetics Research Group, Institute of Medical Biometry and Informatic, University of Heidelberg, Heidelberg, Germany
| | - Valentina Garate-Calderon
- Statistical Genetics Research Group, Institute of Medical Biometry and Informatic, University of Heidelberg, Heidelberg, Germany.,Department of Basic and Clinical Oncology, Medical Faculty, University of Chile, Santiago, Chile
| | - Sinan U Umu
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Trine B Rounge
- Department of Research, Cancer Registry of Norway, Oslo, Norway.,Department of Informatics, University of Oslo, Oslo, Norway
| | - Odilia Popanda
- Division of Cancer Epigenomics, German Cancer Research Center, Heidelberg, Germany
| | - Justo Lorenzo Bermejo
- Statistical Genetics Research Group, Institute of Medical Biometry and Informatic, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
6
|
Massironi S, Pilla L, Elvevi A, Longarini R, Rossi RE, Bidoli P, Invernizzi P. New and Emerging Systemic Therapeutic Options for Advanced Cholangiocarcinoma. Cells 2020; 9:688. [PMID: 32168869 PMCID: PMC7140695 DOI: 10.3390/cells9030688] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 02/05/2023] Open
Abstract
Cholangiocarcinoma (CCA) represents a disease entity that comprises a heterogeneous group of biliary malignant neoplasms, with variable clinical presentation and severity. It may be classified according to its anatomical location and distinguished in intrahepatic (iCCA), perihilar (pCCA), or distal (dCCA), each subtype implying distinct epidemiology, biology, prognosis, and strategy for clinical management. Its incidence has increased globally over the past few decades, and its mortality rate remains high due to both its biological aggressiveness and resistance to medical therapy. Surgery is the only potentially curative treatment and is the standard approach for resectable CCA; however, more than half of the patients have locally advanced or metastatic disease at presentation. For patients with unresectable CCA, the available systemic therapies are of limited effectiveness. However, the advances of the comprehension of the complex molecular landscape of CCA and its tumor microenvironment could provide new keys to better understand the pathogenesis, the mechanisms of resistance and ultimately to identify promising new therapeutic targets. Recently, clinical trials targeting isocitrate dehydrogenase (IDH)-1 mutations and fibroblast growth factor receptor (FGFR)-2 fusions, as well as immunotherapy showed promising results. All these new and emerging therapeutic options are herein discussed.
Collapse
Affiliation(s)
- Sara Massironi
- Division of Gastroenterology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (A.E.); (P.I.)
| | - Lorenzo Pilla
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (L.P.); (R.L.); (P.B.)
| | - Alessandra Elvevi
- Division of Gastroenterology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (A.E.); (P.I.)
| | - Raffaella Longarini
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (L.P.); (R.L.); (P.B.)
| | - Roberta Elisa Rossi
- Gastrointestinal and Hepato-Pancreatic Surgery and Liver Transplantation Unit, Fondazione IRCCS Istituto Nazionale Tumori (INT, National Cancer Institute) - Università degli Studi di Milano, 20100 Milan, Italy;
| | - Paolo Bidoli
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (L.P.); (R.L.); (P.B.)
| | - Pietro Invernizzi
- Division of Gastroenterology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (A.E.); (P.I.)
| |
Collapse
|
7
|
Baichan P, Naicker P, Devar JWS, Smith M, Candy GP, Nweke E. Targeting gallbladder cancer: a pathway based perspective. Mol Biol Rep 2020; 47:2361-2369. [PMID: 32020429 DOI: 10.1007/s11033-020-05269-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/20/2020] [Indexed: 12/29/2022]
Abstract
Gallbladder cancer (GBC) has a poor prognosis with a 5-year survival rate suggesting the need for more effective treatment strategies. Studying the cross-talk of several pathways involved in crucial cellular and biological processes such as cell growth, proliferation, migration and apoptosis would prove beneficial in identifying key players of GBC progression and targeting them. This review highlights several pathways known to be dysregulated in GBC onset and progression and describes known and potential targets. Within these pathways, there are proteins involved in the signalling cascade, which may be targeted as potential biomarkers and drug targets. Furthermore, the cross-talk of these pathways is investigated in the context of GBC and the implications thereof. A better understanding of the pathways involved in GBC pathogenesis will aid clinicians in the prognosis, diagnosis and treatment of patients. There are significant clinical implications of GBC pathway-based studies as they permit the understanding of onset and progression of the disease.
Collapse
Affiliation(s)
- P Baichan
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Republic of South Africa.
| | - P Naicker
- Department of Biosciences, Council for Scientific and Industrial Research, Meiring Naude Rd, Brummeria, Pretoria, South Africa
| | - J W S Devar
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Republic of South Africa
| | - M Smith
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Republic of South Africa
| | - G P Candy
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Republic of South Africa
| | - E Nweke
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Republic of South Africa
| |
Collapse
|
8
|
Jeng KS, Chang CF, Lin SS. Sonic Hedgehog Signaling in Organogenesis, Tumors, and Tumor Microenvironments. Int J Mol Sci 2020; 21:ijms21030758. [PMID: 31979397 PMCID: PMC7037908 DOI: 10.3390/ijms21030758] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
During mammalian embryonic development, primary cilia transduce and regulate several signaling pathways. Among the various pathways, Sonic hedgehog (SHH) is one of the most significant. SHH signaling remains quiescent in adult mammalian tissues. However, in multiple adult tissues, it becomes active during differentiation, proliferation, and maintenance. Moreover, aberrant activation of SHH signaling occurs in cancers of the skin, brain, liver, gallbladder, pancreas, stomach, colon, breast, lung, prostate, and hematological malignancies. Recent studies have shown that the tumor microenvironment or stroma could affect tumor development and metastasis. One hypothesis has been proposed, claiming that the pancreatic epithelia secretes SHH that is essential in establishing and regulating the pancreatic tumor microenvironment in promoting cancer progression. The SHH signaling pathway is also activated in the cancer stem cells (CSC) of several neoplasms. The self-renewal of CSC is regulated by the SHH/Smoothened receptor (SMO)/Glioma-associated oncogene homolog I (GLI) signaling pathway. Combined use of SHH signaling inhibitors and chemotherapy/radiation therapy/immunotherapy is therefore key in targeting CSCs.
Collapse
|
9
|
Virzì A, Roca Suarez AA, Baumert TF, Lupberger J. Oncogenic Signaling Induced by HCV Infection. Viruses 2018; 10:v10100538. [PMID: 30279347 PMCID: PMC6212953 DOI: 10.3390/v10100538] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/29/2018] [Accepted: 09/30/2018] [Indexed: 02/07/2023] Open
Abstract
The liver is frequently exposed to toxins, metabolites, and oxidative stress, which can challenge organ function and genomic stability. Liver regeneration is therefore a highly regulated process involving several sequential signaling events. It is thus not surprising that individual oncogenic mutations in hepatocytes do not necessarily lead to cancer and that the genetic profiles of hepatocellular carcinomas (HCCs) are highly heterogeneous. Long-term infection with hepatitis C virus (HCV) creates an oncogenic environment by a combination of viral protein expression, persistent liver inflammation, oxidative stress, and chronically deregulated signaling events that cumulate as a tipping point for genetic stability. Although novel direct-acting antivirals (DAA)-based treatments efficiently eradicate HCV, the associated HCC risk cannot be fully eliminated by viral cure in patients with advanced liver disease. This suggests that HCV may persistently deregulate signaling pathways beyond viral cure and thereby continue to perturb cancer-relevant gene function. In this review, we summarize the current knowledge about oncogenic signaling pathways derailed by chronic HCV infection. This will not only help to understand the mechanisms of hepatocarcinogenesis but will also highlight potential chemopreventive strategies to help patients with a high-risk profile of developing HCC.
Collapse
Affiliation(s)
- Alessia Virzì
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
| | - Armando Andres Roca Suarez
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
- Pôle Hépato-digestif, Institut Hospitalo-universitaire, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France.
| | - Joachim Lupberger
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
10
|
Machado MV, Diehl AM. Hedgehog signalling in liver pathophysiology. J Hepatol 2018; 68:550-562. [PMID: 29107151 PMCID: PMC5957514 DOI: 10.1016/j.jhep.2017.10.017] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/11/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022]
Abstract
Liver disease remains a leading cause of mortality worldwide despite recent successes in the field of viral hepatitis, because increases in alcohol consumption and obesity are fuelling an epidemic of chronic fatty liver disease for which there are currently no effective medical therapies. About 20% of individuals with chronic liver injury ultimately develop end-stage liver disease due to cirrhosis. Hence, treatments to prevent and reverse cirrhosis in individuals with ongoing liver injury are desperately needed. The development of successful treatments requires an improved understanding of the mechanisms controlling liver disease progression. The liver responds to diverse insults with a conserved wound healing response, suggesting that it might be generally beneficial to optimise pathways that are crucial for effective liver repair. The Hedgehog pathway has emerged as a potential target based on compelling preclinical and clinical data, which demonstrate that it critically regulates the liver's response to injury. Herein, we will summarise evidence of the Hedgehog pathway's role in liver disease and discuss how modulating pathway activity might be applied to improve liver disease outcomes.
Collapse
Affiliation(s)
- Mariana Verdelho Machado
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA,Gastroenterology Department, Hospital de Santa Maria, CHLN, Lisbon, Portugal
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
11
|
Xu S, Zhan M, Wang J. Epithelial-to-mesenchymal transition in gallbladder cancer: from clinical evidence to cellular regulatory networks. Cell Death Discov 2017; 3:17069. [PMID: 29188076 PMCID: PMC5702855 DOI: 10.1038/cddiscovery.2017.69] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/19/2017] [Accepted: 08/23/2017] [Indexed: 02/08/2023] Open
Abstract
Gallbladder cancer (GBC), with late diagnosis, rapid disease progression and early metastasis, is a highly aggressive malignant tumor found worldwide. Patients with GBC have poor survival, low curative resection rates and early recurrence. For such a lethal tumor, uncovering the mechanisms and exploring new strategies to prevent tumor progression and metastasis are critically important. Epithelial-to-mesenchymal transition (EMT) has a prominent role in the early steps of tumor progression and metastasis by initiating polarized epithelial cell transition into motile mesenchymal cells. Accumulating evidence suggests that EMT can be modulated by the cooperation of multiple mechanisms affecting common targets. Signaling pathways, transcriptional and post-transcriptional regulation and epigenetic alterations are involved in the stepwise EMT regulatory network in GBC. Loss of epithelial markers, acquisition of mesenchymal markers and dysregulation of EMT-inducing transcription factors (EMT-TFs) have been observed and are associated with the clinicopathology and prognosis of GBC patients. Therefore, EMT may be a detectable and predictable event for predicting GBC progression and metastasis in the clinic. In this review, we will provide an overview of EMT from the clinical evidence to cellular regulatory networks that have been studied thus far in clinical and basic GBC studies.
Collapse
Affiliation(s)
- Sunwang Xu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Zhan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Zhang F, Ren CC, Liu L, Chen YN, Yang L, Zhang XA, Wang XM, Yu FJ. SHH gene silencing suppresses epithelial-mesenchymal transition, proliferation, invasion, and migration of cervical cancer cells by repressing the hedgehog signaling pathway. J Cell Biochem 2017; 119:3829-3842. [PMID: 28941302 DOI: 10.1002/jcb.26414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/21/2017] [Indexed: 12/31/2022]
Abstract
The study aimed to investigate the mechanism by which the sonic Hedgehog (SHH) gene silencing acts upon epithelial-mesenchymal transition (EMT), proliferation, invasion, and migration of cervical cancer (CC) cells via the Hedgehog signaling pathway. RT-qPCR and Western blotting were all employed to detect the SHH mRNA and protein expressions. HeLa and CasKi cells were cultured and subsequently divided into the blank, negative control (NC), and SHH-RNAi groups. A cell counting kit-8 (CCK-8) assay was utilized for cell proliferation. Cell migration and invasion ability were evaluated through scratching test and Transwell assay. The mRNA and protein expressions of the Hedgehog signaling pathway-related factors were detected using RT-qPCR and Western blotting, respectively. After tumor xenograft in nude mice, tumor growth was subsequently observed. SHH mRNA and protein expressions were greater in the SHH-RNAi group than in the blank and NC groups. Compared with the blank group and NC groups, the SHH-RNAi group displayed inhibited levels of proliferation, migration, invasion abilities, as well as a decreased in the Hh signaling pathway-related factors, as well as a reduction in the mRNA and protein expressions of N-cadherin and Vimentin, however, on the contrary increased expressions of E-cadherin were observed. Following tumor xenograft in nude mice, tumor growth was exhibited vast levels of inhibition, particularly in the SHH-RNAi group in comparison to the blank and the NC groups. During the study it was well established that SHH gene silencing suppresses EMT, proliferation, invasion, and migration of CC cells through the repression of the Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Chen-Chen Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Ling Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Yan-Nan Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Li Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Xiao-An Zhang
- Department of Imaging, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Xiao-Ming Wang
- Department of Oncology, Peking Union Medical College Hospital, Beijing, P. R. China
| | - Feng-Jing Yu
- Department of Oncology, Peking Union Medical College Hospital, Beijing, P. R. China
| |
Collapse
|
13
|
Valle JW, Lamarca A, Goyal L, Barriuso J, Zhu AX, Knittel G, Leeser U, van Oers J, Edelmann W, Heukamp LC, Reinhardt HC. New Horizons for Precision Medicine in Biliary Tract Cancers. Cancer Discov 2017. [PMID: 28818953 DOI: 10.1158/2159-8290] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biliary tract cancers (BTC), including cholangiocarcinoma and gallbladder cancer, are poor-prognosis and low-incidence cancers, although the incidence of intrahepatic cholangiocarcinoma is rising. A minority of patients present with resectable disease but relapse rates are high; benefit from adjuvant capecitabine chemotherapy has been demonstrated. Cisplatin/gemcitabine combination chemotherapy has emerged as the reference first-line treatment regimen; there is no standard second-line therapy. Selected patients may be suitable for liver-directed therapy (e.g., radioembolization or external beam radiation), pending confirmation of benefit in randomized studies. Initial trials targeting the epithelial growth factor receptor and angiogenesis pathways have failed to deliver new treatments. Emerging data from next-generation sequencing analyses have identified actionable mutations (e.g., FGFR fusion rearrangements and IDH1 and IDH2 mutations), with several targeted drugs entering clinical development with encouraging results. The role of systemic therapies, including targeted therapies and immunotherapy for BTC, is rapidly evolving and is the subject of this review.Significance: The authors address genetic drivers and molecular biology from a translational perspective, in an intent to offer a clear view of the recent past, present, and future of BTC. The review describes a state-of-the-art update of the current status and future directions of research and therapy in advanced BTC. Cancer Discov; 7(9); 943-62. ©2017 AACR.
Collapse
Affiliation(s)
- Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, UK. .,Institute of Cancer Sciences, University of Manchester, Wilmslow Road, Manchester, UK
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, UK
| | - Lipika Goyal
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Jorge Barriuso
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, UK.,Faculty of Medical, Biological and Human Sciences, University of Manchester, Rumford Street, Manchester, UK
| | - Andrew X Zhu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.
| | | | | | | | | | | | | |
Collapse
|
14
|
Valle JW, Lamarca A, Goyal L, Barriuso J, Zhu AX. New Horizons for Precision Medicine in Biliary Tract Cancers. Cancer Discov 2017; 7:943-962. [PMID: 28818953 DOI: 10.1158/2159-8290.cd-17-0245] [Citation(s) in RCA: 447] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/24/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023]
Abstract
Biliary tract cancers (BTC), including cholangiocarcinoma and gallbladder cancer, are poor-prognosis and low-incidence cancers, although the incidence of intrahepatic cholangiocarcinoma is rising. A minority of patients present with resectable disease but relapse rates are high; benefit from adjuvant capecitabine chemotherapy has been demonstrated. Cisplatin/gemcitabine combination chemotherapy has emerged as the reference first-line treatment regimen; there is no standard second-line therapy. Selected patients may be suitable for liver-directed therapy (e.g., radioembolization or external beam radiation), pending confirmation of benefit in randomized studies. Initial trials targeting the epithelial growth factor receptor and angiogenesis pathways have failed to deliver new treatments. Emerging data from next-generation sequencing analyses have identified actionable mutations (e.g., FGFR fusion rearrangements and IDH1 and IDH2 mutations), with several targeted drugs entering clinical development with encouraging results. The role of systemic therapies, including targeted therapies and immunotherapy for BTC, is rapidly evolving and is the subject of this review.Significance: The authors address genetic drivers and molecular biology from a translational perspective, in an intent to offer a clear view of the recent past, present, and future of BTC. The review describes a state-of-the-art update of the current status and future directions of research and therapy in advanced BTC. Cancer Discov; 7(9); 943-62. ©2017 AACR.
Collapse
Affiliation(s)
- Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, UK. .,Institute of Cancer Sciences, University of Manchester, Wilmslow Road, Manchester, UK
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, UK
| | - Lipika Goyal
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Jorge Barriuso
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, UK.,Faculty of Medical, Biological and Human Sciences, University of Manchester, Rumford Street, Manchester, UK
| | - Andrew X Zhu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
15
|
Sharma A, Sharma KL, Gupta A, Yadav A, Kumar A. Gallbladder cancer epidemiology, pathogenesis and molecular genetics: Recent update. World J Gastroenterol 2017; 23:3978-3998. [PMID: 28652652 PMCID: PMC5473118 DOI: 10.3748/wjg.v23.i22.3978] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/01/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023] Open
Abstract
Gallbladder cancer is a malignancy of biliary tract which is infrequent in developed countries but common in some specific geographical regions of developing countries. Late diagnosis and deprived prognosis are major problems for treatment of gallbladder carcinoma. The dramatic associations of this orphan cancer with various genetic and environmental factors are responsible for its poorly defined pathogenesis. An understanding to the relationship between epidemiology, molecular genetics and pathogenesis of gallbladder cancer can add new insights to its undetermined pathophysiology. Present review article provides a recent update regarding epidemiology, pathogenesis, and molecular genetics of gallbladder cancer. We systematically reviewed published literature on gallbladder cancer from online search engine PubMed (http://www.ncbi.nlm.nih.gov/pubmed). Various keywords used for retrieval of articles were Gallbladder, cancer Epidemiology, molecular genetics and bullion operators like AND, OR, NOT. Cross references were manually searched from various online search engines (http://www.ncbi.nlm.nih.gov/pubmed,https://scholar.google.co.in/, http://www.medline.com/home.jsp). Most of the articles published from 1982 to 2015 in peer reviewed journals have been included in this review.
Collapse
|
16
|
Dixit R, Pandey M, Tripathi SK, Dwivedi AND, Shukla VK. Comparative Analysis of Mutational Profile of Sonic hedgehog Gene in Gallbladder Cancer. Dig Dis Sci 2017; 62:708-714. [PMID: 28058596 DOI: 10.1007/s10620-016-4438-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/28/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND Gallbladder cancer has high incidence in northeastern India; mortality too is high as the disease is often diagnosed late. Numerous studies have shown the role of sonic hedgehog (shh) in different cancers, an important ligand of the hedgehog signaling pathway. AIM This study was carried out to evaluate the shh gene mutations in gallbladder cancer patients. METHODS PCR-SSCP was performed for shh gene in 50 samples each of gallbladder cancer, cholelithiasis, and control. The samples showing aberration in banding pattern were sequenced. RESULTS Variation in banding pattern was observed in 20% gallbladder cancer cases, 10% in cholelithiasis, and none of the control (χ 2 = 11.111; p < 0.05). Sequencing results revealed seven novel point mutations in GBC cases. These novel mutations were found to be associated with histopathology (p < 0.05) and stage (p < 0.05) of gallbladder cancer. CONCLUSION This study reveals several novel individual and repetitive mutations of shh gene in GBC and cholelithiasis samples that may be used as diagnostic markers for gallbladder carcinogenesis.
Collapse
Affiliation(s)
- Ruhi Dixit
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | - Manoj Pandey
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sunil Kumar Tripathi
- Department of Forensic Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Amit Nandan Dhar Dwivedi
- Department of Radio Diagnosis, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vijay Kumar Shukla
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
17
|
Furukawa J, Miyake H, Fujisawa M. GLI2 expression levels in radical nephrectomy specimens as a predictor of disease progression in patients with metastatic clear cell renal cell carcinoma following treatment with sunitinib. Mol Clin Oncol 2016; 5:186-192. [PMID: 27602218 PMCID: PMC4998152 DOI: 10.3892/mco.2016.950] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/20/2016] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to investigate the role of the Hedgehog signaling pathway in the progression of metastatic clear cell renal cell carcinoma (m-ccRCC) as well as the molecular targets of sunitinib, an inhibitor of multiple tyrosine kinases. A total of 39 patients subjected to radical nephrectomy who were diagnosed with m-ccRCC and were subsequently treated with sunitinib were enrolled in the present study. The expression levels of the Hedgehog signaling proteins (GLI1, GLI2, cyclin D1, cyclin E and transforming growth factor-β) and major molecular targets of sunitinib [vascular endothelial growth factor receptor (VEGFR)-1 and −2, and platelet-derived growth factor receptor-α and -β] in primary RCC specimens were assessed by immunohistochemical staining. The expression levels of GLI2, VEGFR-1, VEGFR-2 and pre-treatment C-reactive protein as well as the Memorial Sloan-Kettering Cancer Center risk were identified as significant predictors of progression-free survival (PFS). Of these, only GLI2 expression was independently correlated to PFS according to multivariate analysis. Furthermore, treatment with sunitinib resulted in a marked inhibition of GLI2 expression in the parental human RCC ACHN cell line, but not in ACHN cells with acquired resistance to sunitinib. These findings suggested that GLI2 may be involved in the acquisition of resistance to sunitinib in RCC; thus, it may be useful to consider the expression levels of GLI2 in addition to conventional prognostic parameters when selecting m-ccRCC patients likely to benefit from treatment with sunitinib.
Collapse
Affiliation(s)
- Junya Furukawa
- Division of Urology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hideaki Miyake
- Division of Urology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Masato Fujisawa
- Division of Urology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
18
|
Cheng J, Gao J, Tao K. Prognostic role of Gli1 expression in solid malignancies: a meta-analysis. Sci Rep 2016; 6:22184. [PMID: 26899488 PMCID: PMC4762019 DOI: 10.1038/srep22184] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/02/2016] [Indexed: 02/07/2023] Open
Abstract
Gli1 is a downstream transcriptional factor of Sonic hedgehog pathway in mammalians, and has been recognized as a proliferative indicator of carcinogenesis. However, its actual role in prognosis among solid malignancies remains unclear. Therefore we performed this meta-analysis aiming to discover the correlation between Gli1 positivity and clinical prognosis in patients suffering from diverse carcinomas. A total of 39 studies containing 4496 cases were selected into our quantitative analysis via electronic database search. Original data of 3-year, 5-year, 10-year overall survival and disease-free survival were extracted and calculated using odds ratio and Mantel-Haenszel model. Subgroup analysis was also conducted to clarify the possible confounding factors. P < 0.05 was considered significant in statistics. Gli1 redundancy was associated with worse 3-year, 5-year, 10-year overall survival and disease-free survival in solid malignancies. Different source regions, sample-size, mean-age and detection approaches had no impact on the negative prognostic effect of Gli1 over-expression. Nevertheless, stratified by cancer type and subcellular localization, cytoplasmic Gli1 expression and Gli1 positivity in intracranial tumors was not correlated to poorer 3-year and 5-year prognosis. The over-expression of Gli1 is a credible indicator of poorer prognosis in most of solid malignancies, irrespective of intracranial tumors.
Collapse
Affiliation(s)
- Ji Cheng
- Department of General Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China
| | - Jinbo Gao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|
19
|
Papadopoulos V, Tsapakidis K, Riobo Del Galdo NA, Papandreou CN, Del Galdo F, Anthoney A, Sakellaridis N, Dimas K, Kamposioras K. The Prognostic Significance of the Hedgehog Signaling Pathway in Colorectal Cancer. Clin Colorectal Cancer 2016; 15:116-27. [PMID: 27032873 DOI: 10.1016/j.clcc.2016.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/15/2016] [Accepted: 02/03/2016] [Indexed: 12/11/2022]
Abstract
Despite significant advances in the management of colorectal cancer (CRC) the identification of new prognostic biomarkers continues to be a challenge. Since its initial discovery, the role of the Hedgehog (Hh) signaling pathway in carcinogenesis has been extensively studied. We herein review and comment on the prognostic significance of the Hh signaling pathway in CRC. The differential expression of Hh pathway components between malignant and nonmalignant conditions as well as correlation of Hh activation markers with various clinicopathological parameters and the effect on disease-free survival, overall survival, and disease recurrence in patients with CRC is summarized and discussed. According to the studies reviewed herein the activation of the Hh pathway seems to be correlated with adverse clinicopathological features and worse survival. However, to date study results show significant variability with regard to the effect on outcomes. Such results need to be interpreted carefully and emphasize the need for further well designed studies to characterize the actual influence of the Hh pathway in CRC prognosis.
Collapse
Affiliation(s)
| | | | - Natalia A Riobo Del Galdo
- Department of Biochemistry and Molecular Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | | | - Francesco Del Galdo
- Scleroderma Programme, Leeds Institute of Rheumatic and Musculoskeletal Medicine, LMBRU, University of Leeds, Leeds, United Kingdom
| | - Alan Anthoney
- Department of Medical Oncology, The Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Nikos Sakellaridis
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Konstantinos Dimas
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece.
| | - Konstantinos Kamposioras
- Department of Medical Oncology, The Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom; Department of Medical Oncology, The Mid Yorkshire Hospitals NHS Trust, Wakefield, United Kingdom.
| |
Collapse
|
20
|
Duan ZH, Wang HC, Zhao DM, Ji XX, Song M, Yang XJ, Cui W. Cooperatively transcriptional and epigenetic regulation of sonic hedgehog overexpression drives malignant potential of breast cancer. Cancer Sci 2015; 106:1084-91. [PMID: 25990213 PMCID: PMC4556399 DOI: 10.1111/cas.12697] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 01/24/2023] Open
Abstract
Sonic hedgehog (Shh), a ligand of Hedgehog signaling pathway, is considered an important oncogene and an exciting potential therapeutic target in several cancers. Comprehensive understanding of the regulation mechanism of Shh in cancer cells is necessary to find an effective approach to selectively block its tumorigenic function. We and others previously demonstrated that nuclear factor-kappa B (NF-κB) activation and promoter hypomethylation contributed to the overexpression of Shh. However, the relationship between transcriptional and epigenetic regulation of Shh, and their roles in the malignant phenotype of cancer cells are still not clearly elucidated. In the present study, our data showed that the level of Shh was higher in breast cancer tissues with positive NF-κB nuclear staining and promoter hypomethylation. In addition, survival analysis revealed that Shh overexpression, but not hypomethylation and NF-κB nuclear staining, was a poor prognosis indicator for breast cancers. Moreover, in vitro data demonstrated that both NF-κB activation and hypomethylation in promoter region were positively associated with the overexpression of Shh. Mechanistically, the hypomethylation in Shh promoter could facilitate NF-κB binding to its site, and subsequently cooperate to induce transcription of Shh. Furthermore, the biological function data indicated that overexpressed Shh enhanced the self-renewal capacity and migration ability of breast cancer cells, which could be augmented by promoter demethylation and NF-κB activation. Overall, our findings reveal multiple and cooperative mechanisms of Shh upregulation in cancer cells, and the roles of Shh in tumor malignant behavior, thus suggesting a new strategy for therapeutic interventions to reduce Shh in tumors and improve patients’ prognosis.
Collapse
Affiliation(s)
- Zhao-Heng Duan
- Department of Pharmacology, College of Life Science and Biopharmaceutical of Shenyang Pharmaceutical University, Shenyang, China
| | - Hao-Chuan Wang
- Department of Pharmacology, College of Life Science and Biopharmaceutical of Shenyang Pharmaceutical University, Shenyang, China
| | - Dong-Mei Zhao
- Department of Pharmacology, College of Life Science and Biopharmaceutical of Shenyang Pharmaceutical University, Shenyang, China
| | - Xiao-Xin Ji
- Department of Pharmacology, College of Life Science and Biopharmaceutical of Shenyang Pharmaceutical University, Shenyang, China
| | - Min Song
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Xiao-Jun Yang
- Center for Neuroscience, Medical College of Shantou University, Shantou, China
| | - Wei Cui
- Department of Pharmacology, College of Life Science and Biopharmaceutical of Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
21
|
The Hedgehog signalling pathway mediates drug response of MCF-7 mammosphere cells in breast cancer patients. Clin Sci (Lond) 2015. [PMID: 26201092 DOI: 10.1042/cs20140592] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BCSCs (breast cancer stem cells) have been shown to be resistant to chemotherapy. However, the mechanisms underlying BCSC-mediated chemoresistance remain poorly understood. The Hh (Hedgehog) pathway is important in the stemness maintenance of CSCs. Nonetheless, it is unknown whether the Hh pathway is involved in BCSC-mediated chemoresistance. In the present study, we cultured breast cancer MCF-7 cells in suspension in serum-free medium to obtain BCSC-enriched MCF-7 MS (MCF-7 mammosphere) cells. We showed that MCF-7 MS cells are sensitive to salinomycin, but not paclitaxel, distinct from parent MCF-7 cells. The expression of the critical components of Hh pathway, i.e., PTCH (Patched), SMO (Smoothened), Gli1 and Gli2, was significantly up-regulated in MCF-7 MS cells; salinomycin, but not paclitaxel, treatment caused a remarkable decrease in expression of those genes in MCF-7 MS cells, but not in MCF-7 cells. Salinomycin, but not paclitaxel, increased apoptosis, decreased the migration capacity of MCF-7 MS cells, accompanied by a decreased expression of c-Myc, Bcl-2 and Snail, the target genes of the Hh pathway. The salinomycin-induced cytotoxic effect could be blocked by Shh (Sonic Hedgehog)-mediated Hh signalling activation. Inhibition of the Hh pathway by cyclopamine could sensitize MCF-7 MS cells to paclitaxel. In addition, salinomycin, but not paclitaxel, significantly reduced the tumour growth, accompanied by decreased expression of PTCH, SMO, Gli1 and Gli2 in xenograft tumours. Furthermore, the expression of SMO and Gli1 was positively correlated with the expression of CD44+ / CD24-, and the expression of SMO and Gli1 in CD44+ / CD24- tissues was associated with a significantly shorter OS (overall survival) and DFS (disease-free survival) in breast cancer patients receiving chemotherapy.
Collapse
|
22
|
Bizama C, García P, Espinoza JA, Weber H, Leal P, Nervi B, Roa JC. Targeting specific molecular pathways holds promise for advanced gallbladder cancer therapy. Cancer Treat Rev 2015; 41:222-34. [PMID: 25639632 DOI: 10.1016/j.ctrv.2015.01.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 02/07/2023]
Abstract
Gallbladder cancer is the most common and aggressive malignancy of the biliary tract. The complete surgical resection is the only potentially curative approach in early stage; however, most cases are diagnosed in advanced stages and the response to traditional chemotherapy and radiotherapy is extremely limited, with modest impact in overall survival. The recent progress in understanding the molecular alterations of gallbladder cancer has shown great promise for the development of more effective treatment strategies. This has mainly resulted from the identification of molecular alterations in relevant intracellular signaling pathways-Hedgehog, PI3K/AKT/mTOR, Notch, ErbB, MAPK and angiogenesis-which are potential tailored targets for gallbladder cancer patients. This review discusses the recent remarkable progress in understanding the molecular alterations that represent novel prognosis molecular markers and therapeutic targets for gallbladder cancer, which will provide opportunities for research and for developing innovative strategies that may enhance the benefit of conventional chemotherapy, or eventually modify the fatal natural history of this orphan disease.
Collapse
Affiliation(s)
- Carolina Bizama
- Department of Pathology, Center for Investigation in Translational Oncology (CITO), School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Patricia García
- Department of Pathology, Center for Investigation in Translational Oncology (CITO), School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Jaime A Espinoza
- Department of Pathology, Center for Investigation in Translational Oncology (CITO), School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Helga Weber
- Department of Pathology, School of Medicine, Universidad de La Frontera, CEGIN-BIOREN, Temuco 4811230, Chile
| | - Pamela Leal
- Department of Pathology, School of Medicine, Universidad de La Frontera, CEGIN-BIOREN, Temuco 4811230, Chile
| | - Bruno Nervi
- Department of Hematology Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 26767000, Chile
| | - Juan Carlos Roa
- Department of Pathology, Center for Investigation in Translational Oncology (CITO), School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| |
Collapse
|
23
|
Kampf C, Mardinoglu A, Fagerberg L, Hallström BM, Danielsson A, Nielsen J, Pontén F, Uhlen M. Defining the human gallbladder proteome by transcriptomics and affinity proteomics. Proteomics 2014; 14:2498-507. [PMID: 25175928 DOI: 10.1002/pmic.201400201] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/30/2014] [Accepted: 08/27/2014] [Indexed: 12/12/2022]
Abstract
Global protein analysis of human gallbladder tissue is vital for identification of molecular regulators and effectors of its physiological activity. Here, we employed a genome-wide deep RNA sequencing analysis in 28 human tissues to identify the genes overrepresented in the gallbladder and complemented it with antibody-based immunohistochemistry in 48 human tissues. We characterized human gallbladder proteins and identified 140 gallbladder-specific proteins with an elevated expression in the gallbladder as compared to the other analyzed tissues. Five genes were categorized as enriched, with at least fivefold higher levels in gallbladder, 60 genes were categorized as group enriched with elevated transcript levels in gallbladder shared with at least one other tissue and 75 genes were categorized as enhanced with higher expression than the average expression in other tissues. We explored the localization of the genes within the gallbladder through cell-type specific antibody-based protein profiling and the subcellular localization of the genes through immunofluorescent-based profiling. Finally, we revealed the biological processes and metabolic functions carried out by these genes through the use of GO, KEGG Pathway, and HMR2.0 that is compilation of the human metabolic reactions. We demonstrated the results of the combined analysis of the transcriptomics and affinity proteomics.
Collapse
Affiliation(s)
- Caroline Kampf
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Barreto SG, Dutt A, Chaudhary A. A genetic model for gallbladder carcinogenesis and its dissemination. Ann Oncol 2014; 25:1086-1097. [PMID: 24705974 PMCID: PMC4037856 DOI: 10.1093/annonc/mdu006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 11/05/2013] [Accepted: 11/08/2013] [Indexed: 02/06/2023] Open
Abstract
Gallbladder cancer, although regarded as the most common malignancy of the biliary tract, continues to be associated with a dismal overall survival even in the present day. While complete surgical removal of the tumour offers a good chance of cure, only a fraction of the patients are amenable to curative surgery owing to their delayed presentation. Moreover, the current contribution of adjuvant therapies towards prolonging survival is marginal, at best. Thus, understanding the biology of the disease will not only enable a better appreciation of the pathways of progression but also facilitate the development of an accurate genetic model for gallbladder carcinogenesis and dissemination. This review provides an updated, evidence-based model of the pathways of carcinogenesis in gallbladder cancer and its dissemination. The model proposed could serve as the scaffolding for elucidation of the molecular mechanisms involved in gallbladder carcinogenesis. A better understanding of the pathways involved in gallbladder tumorigenesis will serve to identify patients at risk for the cancer (and who thus could be offered prophylactic cholecystectomy) as well as aid oncologists in planning the most suitable treatment for a particular patient, thereby setting us on the vanguard of transforming the current treatment paradigm for gallbladder cancer.
Collapse
Affiliation(s)
- S G Barreto
- Department of Gastrointestinal Surgery, Gastrointestinal Oncology, and Bariatric Surgery, Medanta Institute of Digestive and Hepatobiliary Sciences, Medanta, The Medicity, Gurgaon
| | - A Dutt
- The Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - A Chaudhary
- Department of Gastrointestinal Surgery, Gastrointestinal Oncology, and Bariatric Surgery, Medanta Institute of Digestive and Hepatobiliary Sciences, Medanta, The Medicity, Gurgaon
| |
Collapse
|
25
|
Matsushita S, Onishi H, Nakano K, Nagamatsu I, Imaizumi A, Hattori M, Oda Y, Tanaka M, Katano M. Hedgehog signaling pathway is a potential therapeutic target for gallbladder cancer. Cancer Sci 2014; 105:272-80. [PMID: 24438533 PMCID: PMC4317941 DOI: 10.1111/cas.12354] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/09/2013] [Accepted: 01/13/2014] [Indexed: 12/16/2022] Open
Abstract
Gallbladder cancer (GBC) is a particularly deadly type of cancer with a 5-year survival rate of only 10%. New effective therapeutic strategies are greatly needed. Recently, we have shown that Hedgehog (Hh) signaling is reactivated in various types of cancer and is a potential therapeutic target. However, little is known about the biological significance of Hh signaling in human GBC. In this study, we determined whether Hh signaling could be a therapeutic target in GBC. The Hh transcription factor Gli1 was detected in the nucleus of GBC cells but not in the nucleus of normal gallbladder cells. The expression levels of Sonic Hh (Shh) and Smoothened (Smo) in human GBC specimens (n = 37) were higher than those in normal gallbladder tissue. The addition of exogenous Shh ligand augmented the anchor-dependent and anchor-independent proliferation and invasiveness of GBC cells in vitro. In contrast, inhibiting the effector Smo decreased the anchor-dependent and anchor-independent proliferation. Furthermore, the suppression of Smo decreased GBC cell invasiveness through the inhibition of MMP-2 and MMP-9 expression and inhibited the epithelial–mesenchymal transition. In a xenograft model, tumor volume in Smo siRNA-transfected GBC cells was significantly lower than in control tumors. These results suggest that Hh signaling is elevated in GBC and may be involved in the acquisition of malignant phenotypes, and that Hh signaling may be a potential therapeutic target for GBC.
Collapse
Affiliation(s)
- Shojiro Matsushita
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yang SH, Hsu CH, Lee JC, Tien YW, Kuo SH, Cheng AL. Nuclear expression of glioma-associated oncogene homolog 1 and nuclear factor-κB is associated with a poor prognosis of pancreatic cancer. Oncology 2013; 85:86-94. [PMID: 23860225 DOI: 10.1159/000353452] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/31/2013] [Indexed: 12/20/2022]
Abstract
OBJECTIVE We investigated the association of the hedgehog pathway with nuclear factor (NF)-κB and clinical outcomes in pancreatic cancer patients. METHODS We analyzed tissue samples for the expression of NF-κB (RelA/p65), sonic hedgehog (Shh) and glioma-associated oncogene homolog 1 (Gli1) by immunohistochemistry and investigated their expression in association with clinical outcomes. RESULTS Eighty-one patients with pancreatic cancer were investigated. Expression of Shh and nuclear expression of Gli1 and NF-κB were found in 63 of 66 (96%), 28 of 68 (41%) and 22 of 68 cases (32%), respectively. Nuclear Gli1 expression was closely associated with nuclear expression of NF-κB (p < 0.001). Patients with nuclear Gli1 had significantly worse prognoses than those without (median survival 7.9 vs. 13.9 months; p = 0.009). Similarly, patients with nuclear expression of NF-κB had shorter overall survival than those with negative or cytoplasmic expression of NF-κB (median survival 5.5 vs. 13.9 months; p < 0.001). Shh expression had no prognostic significance. In the multivariate analysis, NF-κB nuclear expression was closely associated with unfavorable overall survival (p = 0.02). CONCLUSION Our results indicate that nuclear expression of Gli1 or NF-κB is a strong predictor of poor prognosis in pancreatic cancer. Additional investigation of the biologic significance of this association is warranted.
Collapse
Affiliation(s)
- Shih-Hung Yang
- Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|