1
|
Zhang W, Chen X, Xing Y, Chen J, Guo L, Huang Q, Li H, Liu H. Design and Construction of Enzyme-Based Electrochemical Gas Sensors. Molecules 2023; 29:5. [PMID: 38202588 PMCID: PMC10780131 DOI: 10.3390/molecules29010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
The demand for the ubiquitous detection of gases in complex environments is driving the design of highly specific gas sensors for the development of the Internet of Things, such as indoor air quality testing, human exhaled disease detection, monitoring gas emissions, etc. The interaction between analytes and bioreceptors can described as a "lock-and-key", in which the specific catalysis between enzymes and gas molecules provides a new paradigm for the construction of high-sensitivity and -specificity gas sensors. The electrochemical method has been widely used in gas detection and in the design and construction of enzyme-based electrochemical gas sensors, in which the specificity of an enzyme to a substrate is determined by a specific functional domain or recognition interface, which is the active site of the enzyme that can specifically catalyze the gas reaction, and the electrode-solution interface, where the chemical reaction occurs, respectively. As a result, the engineering design of the enzyme electrode interface is crucial in the process of designing and constructing enzyme-based electrochemical gas sensors. In this review, we summarize the design of enzyme-based electrochemical gas sensors. We particularly focus on the main concepts of enzyme electrodes and the selection and design of materials, as well as the immobilization of enzymes and construction methods. Furthermore, we discuss the fundamental factors that affect electron transfer at the enzyme electrode interface for electrochemical gas sensors and the challenges and opportunities related to the design and construction of these sensors.
Collapse
Affiliation(s)
- Wenjian Zhang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (W.Z.); (X.C.); (Y.X.); (J.C.); (L.G.); (Q.H.); (H.L.)
| | - Xinyi Chen
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (W.Z.); (X.C.); (Y.X.); (J.C.); (L.G.); (Q.H.); (H.L.)
| | - Yingying Xing
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (W.Z.); (X.C.); (Y.X.); (J.C.); (L.G.); (Q.H.); (H.L.)
| | - Jingqiu Chen
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (W.Z.); (X.C.); (Y.X.); (J.C.); (L.G.); (Q.H.); (H.L.)
| | - Lanpeng Guo
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (W.Z.); (X.C.); (Y.X.); (J.C.); (L.G.); (Q.H.); (H.L.)
| | - Qing Huang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (W.Z.); (X.C.); (Y.X.); (J.C.); (L.G.); (Q.H.); (H.L.)
| | - Huayao Li
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (W.Z.); (X.C.); (Y.X.); (J.C.); (L.G.); (Q.H.); (H.L.)
- Wenzhou Key Laboratory of Optoelectronic Materials and Devices Application, Wenzhou Advanced Manufacturing Institute of HUST, 1085 Meiquan Road, Wenzhou 325035, China
| | - Huan Liu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (W.Z.); (X.C.); (Y.X.); (J.C.); (L.G.); (Q.H.); (H.L.)
| |
Collapse
|
4
|
Mitsubayashi K, Ohgoshi T, Okamoto T, Wakabayashi Y, Kozuka M, Miyajima K, Saito H, Kudo H. Tonometric biosensor with a differential pressure sensor for chemo-mechanical measurement of glucose. Biosens Bioelectron 2008; 24:1518-21. [PMID: 18849159 DOI: 10.1016/j.bios.2008.08.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 07/31/2008] [Accepted: 08/04/2008] [Indexed: 11/17/2022]
Abstract
A tonometric biosensor for glucose was constructed using a chemo-mechanical reaction unit and a differential pressure sensor. The reaction unit was fabricated by using both liquid and gas cells separated by an enzyme diaphragm membrane, in which glucose oxidase was immobilized onto the single (gas cell) side of the dialysis membrane. By applying glucose solution (0, 25.0, 50.0, 100, 150 and 200 mmol/l) into the liquid cell of the chemo-mechanical reaction unit, the pressure in the gas cell decreased continuously with a steady de-pressure slope because the oxygen consumption in the gas cell was induced by the glucose oxidase (GOD) enzyme reaction at the enzyme side of the porous diaphragm membrane. The steady de-pressure slope in the gas cell showed the linear relationship with the glucose concentration in the liquid cell between 25.0 and 200.0 mmol/l (correlation coefficient of 0.998). A substrate regeneration cycle coupling GOD with l-ascorbic acid (AsA: 0, 1.0, 3.0, 10.0 and 50.0 mmol/l; as reducing reagent system) was applied to the chemo-mechanical reaction unit in order to amplify the output signal of the tonometric biosensor. 3.0 mmol/l concentration of AsA could optimally amplify the sensor signal more than 2.5 times in comparison with that of non-AsA reagent.
Collapse
Affiliation(s)
- Kohji Mitsubayashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | | | | | | | | | | | |
Collapse
|