1
|
Label-free detection of SARS-CoV-2 Spike S1 antigen triggered by electroactive gold nanoparticles on antibody coated fluorine-doped tin oxide (FTO) electrode. Anal Chim Acta 2021; 1188:339207. [PMID: 34794571 PMCID: PMC8529383 DOI: 10.1016/j.aca.2021.339207] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/04/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, also known as 2019-nCov or COVID-19) outbreak has become a huge public health issue due to its rapid transmission making it a global pandemic. Here, we report fabricated fluorine doped tin oxide (FTO) electrodes/gold nanoparticles (AuNPs) complex coupled with in-house developed SARS-CoV-2 spike S1 antibody (SARS-CoV-2 Ab) to measure the response with Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV). The biophysical characterisation of FTO/AuNPs/SARS-CoV-2Ab was done via UV-Visible spectroscopy, Dynamic Light Scattering (DLS), and Fourier Transform Infrared Spectroscopy (FT-IR). The fabricated FTO/AuNPs/SARS-CoV-2Ab immunosensor was optimised for response time, antibody concentration, temperature, and pH. Under optimum conditions, the FTO/AuNPs/Ab based immunosensor displayed high sensitivity with limit of detection (LOD) up to 0.63 fM in standard buffer and 120 fM in spiked saliva samples for detection of SARS-CoV-2 spike S1 antigen (Ag) with negligible cross reactivity Middle East Respiratory Syndrome (MERS) spike protein. The proposed FTO/AuNPs/SARS-CoV-2Ab based biosensor proved to be stable for up to 4 weeks and can be used as an alternative non-invasive diagnostic tool for the rapid, specific and sensitive detection of SARS-CoV-2 Spike Ag traces in clinical samples.
Collapse
|
2
|
Banasiak A, Colleran J. Determination of Integrity, Stability and Density of the DNA Layers Immobilised at Glassy Carbon and Gold Electrodes Using Ferrocyanide. ELECTROANAL 2020. [DOI: 10.1002/elan.202060077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anna Banasiak
- Applied Electrochemistry Group Technological University Dublin, FOCAS Institute Camden Row Dublin 8 D08 CKP1 Ireland
| | - John Colleran
- Applied Electrochemistry Group Technological University Dublin, FOCAS Institute Camden Row Dublin 8 D08 CKP1 Ireland
- School of Chemical and Pharmaceutical Sciences Technological University Dublin, City Campus – Kevin Street Dublin 8 D08 NF82 Ireland
| |
Collapse
|
3
|
Mohanraj J, Durgalakshmi D, Rakkesh RA, Balakumar S, Rajendran S, Karimi-Maleh H. Facile synthesis of paper based graphene electrodes for point of care devices: A double stranded DNA (dsDNA) biosensor. J Colloid Interface Sci 2020; 566:463-472. [DOI: 10.1016/j.jcis.2020.01.089] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/11/2022]
|
4
|
Lozano Untiveros K, da Silva EG, de Abreu FC, da Silva-Júnior EF, de Araújo-Junior JX, Mendoça de Aquino T, Armas SM, de Moura RO, Mendonça-Junior FJ, Serafim VL, Chumbimuni-Torres K. An electrochemical biosensor based on Hairpin-DNA modified gold electrode for detection of DNA damage by a hybrid cancer drug intercalation. Biosens Bioelectron 2019; 133:160-168. [DOI: 10.1016/j.bios.2019.02.071] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/14/2019] [Accepted: 02/28/2019] [Indexed: 12/16/2022]
|
5
|
Komal, Sonia, Kukreti S, Kaushik M. Exploring the potential of environment friendly silver nanoparticles for DNA interaction: Physicochemical approach. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 194:158-165. [PMID: 30954875 DOI: 10.1016/j.jphotobiol.2019.03.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 03/13/2019] [Accepted: 03/29/2019] [Indexed: 10/27/2022]
Abstract
Nanosilver, being the most prominent nanoproduct has diverse bio-medical applications and hence the effects associated with their exposure need to be investigated in detail. The interaction of metal nanoparticles with DNA has become a matter of interest, as their effect on structural integrity, synthesis and replication could be explored through it. Present work aims at the facile synthesis and characterization of spherical silver nanoparticles (AgNPs) using Epipremnum aureum leaves extract. Nanoparticles were characterized using UV-Visible spectroscopy, Transmission Electron Microscopy (TEM), High Resolution X-ray Diffraction (HR-XRD) and Dynamic Light Scattering (DLS) studies. The interaction of AgNPs with Calf thymus DNA (CT-DNA) was investigated using different spectroscopic techniques like UV-Visible spectroscopy, UV-thermal melting, Circular Dichroism and fluorescence spectroscopic studies. Fluorescence results suggest van der Waals and H-bonding interactions, which are predominantly responsible for the interaction of AgNPs with CT-DNA. Circular dichroism and thermal melting studies are pointing towards the groove binding of AgNPs to CT-DNA. DNA duplex destabilization was confirmed by the decreased thermal melting temperature of CT-DNA on addition of AgNPs. Present study might open up new vistas for the study of unusual kind of DNA binders, which can destabilize DNA and may further be used for various biomedical applications.
Collapse
Affiliation(s)
- Komal
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India; Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Sonia
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India; Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Mahima Kaushik
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India.
| |
Collapse
|
6
|
Nouri M, Meshginqalam B, Sahihazar MM, Sheydaie Pour Dizaji R, Ahmadi MT, Ismail R. Experimental and theoretical investigation of sensing parameters in carbon nanotube-based DNA sensor. IET Nanobiotechnol 2018; 12:1125-1129. [PMID: 30964025 PMCID: PMC8676651 DOI: 10.1049/iet-nbt.2018.5068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/23/2018] [Accepted: 06/07/2018] [Indexed: 04/05/2024] Open
Abstract
Nowadays, sensitive biosensors with high selectivity, lower costs and short response time are required for detection of DNA. The most preferred materials in DNA sensor designing are nanomaterials such as carbon and Au nanoparticles, because of their very high surface area and biocompatibility which lead to performance and sensitivity improvements in DNA sensors. Carbon nanomaterials such as carbon nanotubes (CNTs) can be considered as a suitable DNA sensor platform due to their high surface-to-volume ratio, favourable electronic properties and fast electron transfer rate. Therefore, in this study, the CNTs which are synthesised by pulsed AC arc discharge method on a high-density polyethylene substrate are used as conducting channels in a chemiresistor for the electrochemical detection of double stranded DNA. Moreover, the response of the proposed sensor is investigated experimentally and analytically in different temperatures, which confirm good agreement between the presented model and experimental data.
Collapse
Affiliation(s)
- Mina Nouri
- Department of Nanotechnology, Urmia University, Urmia, Iran
| | | | | | | | - Mohammad Taghi Ahmadi
- Electronics and Computer Engineering Department, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.
| | - Razali Ismail
- Electronics and Computer Engineering Department, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| |
Collapse
|
7
|
Construction of electrochemical DNA biosensors for investigation of potential risk chemical and physical agents. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-017-2012-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Ensafi AA, Jamei HR, Heydari-Bafrooei E, Rezaei B. Electrochemical study of quinone redox cycling: A novel application of DNA-based biosensors for monitoring biochemical reactions. Bioelectrochemistry 2016; 111:15-22. [DOI: 10.1016/j.bioelechem.2016.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 04/26/2016] [Accepted: 04/26/2016] [Indexed: 01/09/2023]
|
9
|
Heppell JT, Al-Rawi JMA. Functionalization of Quinazolin-4-Ones Part 2 #: Reactivity of 2-Amino-3, 4, 5, or 6-Nitrobenzoic Acids with Triphenylphosphine Thiocyanate, Alkyl Isothiocyanates, and Further Derivatization Reactions. J Heterocycl Chem 2015. [DOI: 10.1002/jhet.2235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jacob T. Heppell
- School of Pharmacy and Applied Science; La Trobe University Bendigo; P.O. Box 199 Bendigo 3550 Australia
| | - Jasim M. A. Al-Rawi
- School of Pharmacy and Applied Science; La Trobe University Bendigo; P.O. Box 199 Bendigo 3550 Australia
| |
Collapse
|
10
|
Abstract
The use of cancer biomarkers is emerging as one of the most promising strategies for early detection and management of cancer. Biosensors can provide advanced platforms for biomarker analysis with the advantages of being easy to use, inexpensive, rapid and offering multi-analyte testing capability. The intention of this article is to discuss recent advances and trends in affinity biosensors for cancer diagnosis, prognosis and even theragnosis. The different types of affinity biosensors will be reviewed in terms of molecular recognition element. Current challenges and trends for this technology will be also discussed, with a particular emphasis on recent developments in miRNA detection.
Collapse
|
11
|
Taleat Z, Khoshroo A, Mazloum-Ardakani M. Screen-printed electrodes for biosensing: a review (2008–2013). Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1181-1] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Sensitive detection of enteropathogenic E. coli using a bfpA gene-based electrochemical sensor. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1061-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Ensafi AA, Heydari-Bafrooei E, Rezaei B. DNA-Based Biosensor for Comparative Study of Catalytic Effect of Transition Metals on Autoxidation of Sulfite. Anal Chem 2012; 85:991-7. [DOI: 10.1021/ac302693j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ali A. Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156−83111, Iran
| | | | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156−83111, Iran
| |
Collapse
|
14
|
Abstract
Biosensors - classification, characterization and new trendsBiosensors represent promising analytical tools applicable in areas such as clinical diagnosis, food industry, environment monitoring and in other fields, where rapid and reliable analyses are needed. Some biosensors were successfully implemented in the commercial sphere, but majority needs to be improved in order to overcome some imperfections. This review covers the basic types, principles, constructions and use of biosensors as well as new trends used for their fabrication.
Collapse
|
15
|
Zhang Q, Dai P, Yang Z. Sensitive DNA-hybridization biosensors based on gold nanoparticles for testing DNA damage by Cd(II) ions. Mikrochim Acta 2011. [DOI: 10.1007/s00604-011-0558-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Jia J, Wang G, Lu D. 4-[(7-Fluoro-quinazolin-4-yl)-oxy]aniline. Acta Crystallogr Sect E Struct Rep Online 2010; 67:o229. [PMID: 21522728 PMCID: PMC3050189 DOI: 10.1107/s1600536810053286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/19/2010] [Indexed: 11/10/2022]
Abstract
In the molecule of the title compound, C14H10FN3O, the bicyclic quinazoline system is effectively planar, with a mean deviation from planarity of 0.0140 (3) Å. The quinazoline heterocyclic system and the adjacent benzene ring make a dihedral angle of 85.73 (9)°. Two intermolecular N—H⋯N hydrogen bonds contribute to the stability of the crystal structure. In addition, a weak π–π stacking interaction [centroid–centroid distance = 3.902 (2) Å] is observed.
Collapse
|
17
|
Witte C, Lisdat F. Direct Detection of DNA and DNA-Ligand Interaction by Impedance Spectroscopy. ELECTROANAL 2010. [DOI: 10.1002/elan.201000410] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Ozkan-Ariksoysal D, Akgul O, Aydinlik S, Topkaya SN, Aladag N, Ozsoz M. New Electroactive Hybridization Indicators 2-Phthalimido-N-Substitutedphenylethanesulfonamide Derivatives for Biosensor Applications: Ring Substituent Effect on Interaction between Compound and DNA. ELECTROANAL 2010. [DOI: 10.1002/elan.201000128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Voltammetric detection of damage to DNA caused by nitro derivatives of fluorene using an electrochemical DNA biosensor. Anal Bioanal Chem 2010; 397:233-241. [DOI: 10.1007/s00216-010-3517-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 01/04/2010] [Accepted: 01/27/2010] [Indexed: 10/19/2022]
|
20
|
Qian P, Ai S, Yin H, Li J. Evaluation of DNA damage and antioxidant capacity of sericin by a DNA electrochemical biosensor based on dendrimer-encapsulated Au-Pd/chitosan composite. Mikrochim Acta 2010. [DOI: 10.1007/s00604-009-0280-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
21
|
Dai H, Lin Y, Xu H, Yang C, Chen G. Direct electrochemistry of thermally denatured calf thymus DNA on a poly(methyl methacrylate)–graphite microcomposite electrode. Analyst 2010; 135:2913-7. [DOI: 10.1039/c0an00485e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Sun S, Yao Y, Wang T, Li Y, Ma X, Zhang L. Nanosilver and DNA-functionalized immunosensing probes for electrochemical immunoassay of alpha-fetoprotein. Mikrochim Acta 2009. [DOI: 10.1007/s00604-009-0174-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
|
24
|
Disposable DNA biosensor with the carbon nanotubes–polyethyleneimine interface at a screen-printed carbon electrode for tests of DNA layer damage by quinazolines. Anal Bioanal Chem 2009; 394:855-61. [DOI: 10.1007/s00216-009-2740-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 02/26/2009] [Accepted: 03/04/2009] [Indexed: 10/21/2022]
|
25
|
Sun W, Li Y, Gao H, Jiao K. Direct electrochemistry of double stranded DNA on ionic liquid modified carbon paste electrode. Mikrochim Acta 2009. [DOI: 10.1007/s00604-009-0135-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Electrochemical DNA hybridization assay for the FMV 35S gene sequence using PbS nanoparticles as a label. Mikrochim Acta 2008. [DOI: 10.1007/s00604-008-0116-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|