1
|
Guliya H, Yadav M, Nohwal B, Lata S, Chaudhary R. Emphasizing laccase based amperometric biosensing as an eventual panpharmacon for rapid and effective detection of phenolic compounds. Biochim Biophys Acta Gen Subj 2024; 1868:130691. [PMID: 39117046 DOI: 10.1016/j.bbagen.2024.130691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Phenols and phenolic compounds are major plant metabolites used in industries to produce pesticides, dyes, medicines, and plastics. These compounds enter water bodies, soil, and living organisms via such industrial routes. Some polyphenolic compounds like phenolic acids, flavonoids have antioxidant and organoleptic qualities, as well as preventive effects against neurodegenerative illnesses, cardiovascular disease, diabetes, and cancer. However, many of the polyphenolic compounds, such as Bisphenol A, phthalates, and dioxins also cause major environmental pollution and endocrine disruption, once the dose level becomes objectionable. The development of reliable and rapid methods for studying their dose dependency, high-impact detrimental effects, and continuous monitoring of phenol levels in humans and environmental samples is a crucial necessity of the day. Enzymatic biosensors employing phenol oxidases like tyrosinase, peroxidase and laccase, utilizing electrochemical amperometric methods are innovative methods for phenol quantification. Enzymatic biosensing, being highly sensitive and efficacious technique, is illuminated in this review article as a progressive approach for phenol quantification with special emphasis on laccase amperometric biosensors. Even more, the review article discussion is extended up to nanozymes, composites of metal organic frameworks (MOFs), and molecularly imprinted polymers (MIPs) as some emerging species for electro-chemical sensing of phenols. Applications of phenol quantification and green biosensing are also specified. A concrete summary of the innovative polyphenol detection approaches with futuristic scope indicates a triumph over some existing constraints of the phenomenological approaches providing an informative aisle to the modern researchers towards the bulk readability.
Collapse
Affiliation(s)
- Himani Guliya
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murth, al-131039, Haryana, India
| | - Meena Yadav
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murth, al-131039, Haryana, India
| | - Bhawna Nohwal
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murth, al-131039, Haryana, India
| | - Suman Lata
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murth, al-131039, Haryana, India.
| | - Reeti Chaudhary
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murth, al-131039, Haryana, India.
| |
Collapse
|
2
|
Verma S, Thakur D, Pandey CM, Kumar D. Recent Prospects of Carbonaceous Nanomaterials-Based Laccase Biosensor for Electrochemical Detection of Phenolic Compounds. BIOSENSORS 2023; 13:305. [PMID: 36979517 PMCID: PMC10046707 DOI: 10.3390/bios13030305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Phenolic compounds (PhCs) are ubiquitously distributed phytochemicals found in many plants, body fluids, food items, medicines, pesticides, dyes, etc. Many PhCs are priority pollutants that are highly toxic, teratogenic, and carcinogenic. Some of these are present in body fluids and affect metabolism, while others possess numerous bioactive properties such as retaining antioxidant and antimicrobial activity in plants and food products. Therefore, there is an urgency for developing an effective, rapid, sensitive, and reliable tool for the analysis of these PhCs to address their environmental and health concern. In this context, carbonaceous nanomaterials have emerged as a promising material for the fabrication of electrochemical biosensors as they provide remarkable characteristics such as lightweight, high surface: volume, excellent conductivity, extraordinary tensile strength, and biocompatibility. This review outlines the current status of the applications of carbonaceous nanomaterials (CNTs, graphene, etc.) based enzymatic electrochemical biosensors for the detection of PhCs. Efforts have also been made to discuss the mechanism of action of the laccase enzyme for the detection of PhCs. The limitations, advanced emerging carbon-based material, current state of artificial intelligence in PhCs detection, and future scopes have also been summarized.
Collapse
Affiliation(s)
- Sakshi Verma
- Department of Applied Chemistry, Delhi Technological University, Delhi 110042, India
| | - Deeksha Thakur
- Department of Applied Chemistry, Delhi Technological University, Delhi 110042, India
| | - Chandra Mouli Pandey
- Department of Chemistry, Faculty of Science, SGT University, Gurugram 122505, India
| | - Devendra Kumar
- Department of Applied Chemistry, Delhi Technological University, Delhi 110042, India
| |
Collapse
|
3
|
KARASAKAL A, YALÇIN GÜRKAN Y, PARLAR S. Candidate drug molecule-DNA interaction and molecular modelling of candidate drug molecule. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2022. [DOI: 10.32322/jhsm.1117781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aim: 1,4-dihydropyridine derivative, 1-(3-phenyl propyl)-4-(2-(2-hydroxybenzylidene) hydrazone)-1,4-dihydropyridine (abbreviated as DHP) was synthesized as potential agent for Alzheimer’s disease which is a progressive neurodegenerative brain disorder affecting millions of elderly people. With this study, the electrochemical properties of DHP were investigated and its interaction with DNA was analyzed by differential pulse voltammetry (DPV) and cyclic voltammetry (CV) measurements. In addition, this study aims to determine degradation mechanism of the DHP molecule by Density-functional theory (DFT) in gas and in aqueous phase.
Material and Method: Experimental conditions such as immobilization time, the effect of the scan rate, concentration, and the effect of pH were optimized. The method was validated according to validation parameters such as range, precision, linearity, limit of detection (LOD), limit of quantitation (LOQ) and inter/intraday.
Results: Linearity study for the calibration curve of DNA and DHP with DPV was calculated in the calibration range 10-100 µg/mL. The LOD and LOQ values were calculated as 3 and 10 µg/mL and intra-day and inter-day repeatability (RSD %) were 1.85 and 3.64 µg/mL, respectively. After the DHP-DNA interaction, the oxidation currents of guanine decreased as a proof of interaction. The activation energy of the most possible path of reaction was calculated, and their thermodynamically most stable state was determined in gas phase.
Conclusion: We developed to improve a sensitive, fast and easy detection process for determination of interaction between DHP and DNA.
Collapse
|
4
|
Sharma VK, Jelen F, Trnkova L. Functionalized solid electrodes for electrochemical biosensing of purine nucleobases and their analogues: a review. SENSORS (BASEL, SWITZERLAND) 2015; 15:1564-600. [PMID: 25594595 PMCID: PMC4327092 DOI: 10.3390/s150101564] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/04/2015] [Indexed: 12/14/2022]
Abstract
Interest in electrochemical analysis of purine nucleobases and few other important purine derivatives has been growing rapidly. Over the period of the past decade, the design of electrochemical biosensors has been focused on achieving high sensitivity and efficiency. The range of existing electrochemical methods with carbon electrode displays the highest rate in the development of biosensors. Moreover, modification of electrode surfaces based on nanomaterials is frequently used due to their extraordinary conductivity and surface to volume ratio. Different strategies for modifying electrode surfaces facilitate electron transport between the electrode surface and biomolecules, including DNA, oligonucleotides and their components. This review aims to summarize recent developments in the electrochemical analysis of purine derivatives, as well as discuss different applications.
Collapse
Affiliation(s)
- Vimal Kumar Sharma
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| | - Frantisek Jelen
- Institute of Biophysics of the Academy of Sciences of the Czech Republic, V.V.I., Kralovopolska 135, CZ-612 65 Brno, Czech Republic.
| | - Libuse Trnkova
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| |
Collapse
|
5
|
Tang W, Li W, Li Y, Zhang M, Zeng X. Electrochemical sensors based on multi-walled nanotubes for investigating the damage and action of 6-mercaptopurine on double-stranded DNA. NEW J CHEM 2015. [DOI: 10.1039/c5nj01303h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clear damage to dsDNA caused by 6-MP was observed. The damage to adenine was more severe than to guanine.
Collapse
Affiliation(s)
- Wenwei Tang
- Department of Chemistry
- and Shanghai Key Laboratory of Chemical Assessment and Sustainability
- Tongji University
- Shanghai
- China
| | - Weihao Li
- Handan Municipal Centre for Disease Control and Prevention
- Handan
- China
| | - Yanfei Li
- School of Life Science and Technology
- Tongji University
- Shanghai
- China
| | - Min Zhang
- School of Life Science and Technology
- Tongji University
- Shanghai
- China
| | - Xinping Zeng
- School of Life Science and Technology
- Tongji University
- Shanghai
- China
| |
Collapse
|
6
|
Tajik S, Taher MA, Beitollahi H, Torkzadeh-Mahani M. Electrochemical determination of the anticancer drug taxol at a ds-DNA modified pencil-graphite electrode and its application as a label-free electrochemical biosensor. Talanta 2014; 134:60-64. [PMID: 25618641 DOI: 10.1016/j.talanta.2014.10.063] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 10/02/2014] [Accepted: 10/30/2014] [Indexed: 12/16/2022]
Abstract
In this study a novel biosensor for determination of taxol is described. The interaction of taxol with salmon-sperm double-stranded DNA (ds-DNA) based on the decreasing of the oxidation signals of guanine and adenine bases was studied electrochemically with a pencil-graphite electrode (PGE) using a differential pulse voltammetry (DPV) method. The decreases in the intensity of the guanine and adenine oxidation signals after interaction with taxol were used as indicator signals for the sensitive determination of taxol. DPV exhibits a linear dynamic range of 2.0×10(-7)-1.0×10(-5) M for taxol with a detection limit of 8.0×10(-8) M. Finally, this modified electrode was used for determination of taxol in some real samples.
Collapse
Affiliation(s)
- Somayeh Tajik
- Department of Chemistry, Shahid Bahonar University of Kerman, P.O. Box 76175-133, Kerman, Iran; Young Researchers Society, Shahid Bahonar University of Kerman, P.O. Box 76175-133, Kerman, Iran
| | - Mohammad Ali Taher
- Department of Chemistry, Shahid Bahonar University of Kerman, P.O. Box 76175-133, Kerman, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Mosoud Torkzadeh-Mahani
- Biotechnology Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
7
|
Tang W, Zhang M, Li W, Zeng X. An electrochemical sensor based on polyaniline for monitoring hydroquinone and its damage on DNA. Talanta 2014; 127:262-8. [DOI: 10.1016/j.talanta.2014.03.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/27/2014] [Accepted: 03/29/2014] [Indexed: 12/28/2022]
|
8
|
Li DW, Zhai WL, Li YT, Long YT. Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1115-3] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Marco JP, Borges KB, Tarley CRT, Ribeiro ES, Pereira AC. Development and application of an electrochemical biosensor based on carbon paste and silica modified with niobium oxide, alumina and DNA (SiO2/Al2O3/Nb2O5/DNA) for amitriptyline determination. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.06.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Biosensor for bisphenol A leaching from baby bottles using a glassy carbon electrode modified with DNA and single walled carbon nanotubes. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1025-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Mirmoghtadaie L, Ensafi AA, Kadivar M, Norouzi P. Highly selective electrochemical biosensor for the determination of folic acid based on DNA modified-pencil graphite electrode using response surface methodology. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:1753-8. [PMID: 23827633 DOI: 10.1016/j.msec.2012.12.090] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/21/2012] [Accepted: 12/28/2012] [Indexed: 11/30/2022]
Abstract
An electrochemical DNA biosensor was proposed as a screening device for the rapid analysis of folic acid using a pencil graphite electrode modified with salmon sperm ds-DNA. At first, immobilization of the ds-DNA on pencil graphite electrode was optimized using response surface methodology. Solution pH, DNA concentration, time of DNA deposition and potential of deposition was optimized each at three levels. The optimum combinations for the reaction were pH 4.8, DNA concentration of 24 μg mL(-1), deposition time of 304 s, and deposition potential of 0.60 V, by which the adenine signal was recorded as 3.04 μA. Secondly the binding of folic acid to DNA immobilized on a pencil graphite electrode was measured through the variation of the electrochemical signal of adenine. Folic acid could be measure in the range of 0.1-10.0 μmol L(-1) with a detection limit of 1.06×10(-8) μmol L(-1). The relative standard deviations for ten replicate differential pulse voltammetric measurements of 2.0 and 5.0 μmol L(-1) folic acid were 4.6% and 4.3%, respectively. The biosensor was successfully used to measure folic acid in different real samples.
Collapse
Affiliation(s)
- Leila Mirmoghtadaie
- Department of Food Science and Technology, College of agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | | | | | |
Collapse
|
12
|
Expanded graphite modified with intercalated montmorillonite for the electrochemical determination of catechol. J Electroanal Chem (Lausanne) 2012. [DOI: 10.1016/j.jelechem.2012.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH. Recent advances in graphene-based biosensors. Biosens Bioelectron 2011; 26:4637-48. [DOI: 10.1016/j.bios.2011.05.039] [Citation(s) in RCA: 1032] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/25/2011] [Accepted: 05/25/2011] [Indexed: 02/07/2023]
|
14
|
Biosensor based on a glassy carbon electrode modified with tyrosinase immmobilized on multiwalled carbon nanotubes. Mikrochim Acta 2011. [DOI: 10.1007/s00604-011-0616-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Electrochemical sensor for monitoring the photodegradation of catechol based on DNA-modified graphene oxide. Mikrochim Acta 2011. [DOI: 10.1007/s00604-011-0580-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Kong Y, Chen X, Wang W, Chen Z. A novel palygorskite-modified carbon paste amperometric sensor for catechol determination. Anal Chim Acta 2011; 688:203-7. [DOI: 10.1016/j.aca.2011.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/20/2010] [Accepted: 01/06/2011] [Indexed: 10/18/2022]
|
17
|
Qian P, Ai S, Yin H, Li J. Evaluation of DNA damage and antioxidant capacity of sericin by a DNA electrochemical biosensor based on dendrimer-encapsulated Au-Pd/chitosan composite. Mikrochim Acta 2010. [DOI: 10.1007/s00604-009-0280-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
18
|
Jacobs CB, Peairs MJ, Venton BJ. Review: Carbon nanotube based electrochemical sensors for biomolecules. Anal Chim Acta 2010; 662:105-27. [PMID: 20171310 DOI: 10.1016/j.aca.2010.01.009] [Citation(s) in RCA: 567] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 12/22/2009] [Accepted: 01/05/2010] [Indexed: 11/30/2022]
Abstract
Carbon nanotubes (CNTs) have been incorporated in electrochemical sensors to decrease overpotential and improve sensitivity. In this review, we focus on recent literature that describes how CNT-based electrochemical sensors are being developed to detect neurotransmitters, proteins, small molecules such as glucose, and DNA. Different types of electrochemical methods are used in these sensors including direct electrochemical detection with amperometry or voltammetry, indirect detection of an oxidation product using enzyme sensors, and detection of conductivity changes using CNT-field effect transistors (FETs). Future challenges for the field include miniaturizing sensors, developing methods to use only a specific nanotube allotrope, and simplifying manufacturing.
Collapse
Affiliation(s)
- Christopher B Jacobs
- Dept. of Chemistry, University of Virginia, PO Box 400319, Charlottesville, VA 22904, United States
| | | | | |
Collapse
|
19
|
Alessio P, Pavinatto FJ, Oliveira Jr ON, De Saja Saez JA, Constantino CJL, Rodríguez-Méndez ML. Detection of catechol using mixed Langmuir–Blodgett films of a phospholipid and phthalocyanines as voltammetric sensors. Analyst 2010; 135:2591-9. [DOI: 10.1039/c0an00159g] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Glassy carbon electrodes modified with CNT dispersed in chitosan: Analytical applications for sensing DNA–methylene blue interaction. J Electroanal Chem (Lausanne) 2009. [DOI: 10.1016/j.jelechem.2009.07.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|