1
|
Koczorowski T, Cerbin-Koczorowska M, Rębiś T. Azaporphyrins Embedded on Carbon-Based Nanomaterials for Potential Use in Electrochemical Sensing-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2861. [PMID: 34835626 PMCID: PMC8620011 DOI: 10.3390/nano11112861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 01/15/2023]
Abstract
Phthalocyanines and porphyrazines as macrocyclic aza-analogues of well-known porphyrins were deposited on diverse carbon-based nanomaterials and investigated as sensing devices. The extended π-conjugated electron system of these macrocycles influences their ability to create stable hybrid systems with graphene or carbon nanotubes commonly based on π-π stacking interactions. During a 15-year period, the electrodes modified by deposition of these systems have been applied for the determination of diverse analytes, such as food pollutants, heavy metals, catecholamines, thiols, glucose, peroxides, some active pharmaceutical ingredients, and poisonous gases. These procedures have also taken place, on occasion, in the presence of various polymers, ionic liquids, and other moieties. In the review, studies are presented that were performed for sensing purposes, involving azaporphyrins embedded on graphene, graphene oxide or carbon nanotubes (both single and multi-walled ones). Moreover, possible methods of electrode fabrication, limits of detection of each analyte, as well as examples of macrocyclic compounds applied as sensing materials, are critically discussed.
Collapse
Affiliation(s)
- Tomasz Koczorowski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Magdalena Cerbin-Koczorowska
- Department of Medical Education, Poznan University of Medical Sciences, 7 Rokietnicka Str., 60-806 Poznan, Poland;
| | - Tomasz Rębiś
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland;
| |
Collapse
|
2
|
Abstract
Phthalocyanines are aromatic or macrocyclic organic compounds and attract great attention due to their numerous properties. They have many high-tech applications in different areas of the industry such as dyestuffs, thermal printing screens, photovoltaic solar cells, membrane catalytic reactors, semiconductor materials and gas sensors. In the last decade, electrochemical sensor studies have accelerated with the catalytic lighting. It plays a dominant role in the development and implementation of new generation sensors. The aim of this study is to review the electrochemical methods based on electrode modification with phthalocyanines and to shed light on new application areas of phthalocyanines. The focal point was based on the sensor applications of phthalocyanines in the determination of drugs, pesticides, organic materials and metals etc. by electrochemical methods. Experimental conditions and some validation parameters of the sensor applications such as metal phthalocyanine types, indicator electrodes, selectivity, working ranges, detection limits, and analytical applications were discussed. Consequently, this is the first review dealing with the applications of phthalocyanines in electrochemical sensors for the sensitive determination of analytes in a variety of matrices.
Collapse
Affiliation(s)
- Ersin Demir
- Department of Analytical Chemistry, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Hulya Silah
- Department of Chemistry, Faculty of Art & Science, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
3
|
Cocoa powder and catechins as natural mediators to modify carbon-black based screen-printed electrodes. Application to free and total glutathione detection in blood. Talanta 2020; 207:120349. [DOI: 10.1016/j.talanta.2019.120349] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023]
|
4
|
Olmos Moya PM, Martínez Alfaro M, Kazemi R, Alpuche-Avilés MA, Griveau S, Bedioui F, Gutiérrez Granados S. Simultaneous Electrochemical Speciation of Oxidized and Reduced Glutathione. Redox Profiling of Oxidative Stress in Biological Fluids with a Modified Carbon Electrode. Anal Chem 2017; 89:10726-10733. [DOI: 10.1021/acs.analchem.7b01690] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | - Rezvan Kazemi
- Department
of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | | | - Sophie Griveau
- Université
Paris Descartes-Sorbonne Paris Cité, UTCBS, 75006 Paris, France
| | - Fethi Bedioui
- Université
Paris Descartes-Sorbonne Paris Cité, UTCBS, 75006 Paris, France
| | | |
Collapse
|
5
|
Synthesis of Surface Molecularly Imprinted Poly(methacrylic acid-hemin) on Carbon Nanotubes for the Voltammetric Simultaneous Determination of Antioxidants from Lipid Matrices and Biodiesel. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.06.174] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Development of a sensor for L-Dopa based on Co(DMG)2ClPy/multi-walled carbon nanotubes composite immobilized on basal plane pyrolytic graphite electrode. Bioelectrochemistry 2012; 86:22-9. [DOI: 10.1016/j.bioelechem.2012.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 12/20/2011] [Accepted: 01/01/2012] [Indexed: 11/19/2022]
|
7
|
Zagal JH, Griveau S, Santander-Nelli M, Granados SG, Bedioui F. Carbon nanotubes and metalloporphyrins and metallophthalocyanines-based materials for electroanalysis. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424612300054] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We discuss here the state of the art on hybrid materials made from single (SWCNT) or multi (MWCNT) walled carbon nanotubes and MN4complexes such as metalloporphyrins and metallophthalocyanines. The hybrid materials have been characterized by several methods such as cyclic voltammetry (CV), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and scanning electrochemical microscropy (SECM). The materials are employed for electrocatalysis of reactions such as oxygen and hydrogen peroxide reduction, nitric oxide oxidation, oxidation of thiols and other pollutants.
Collapse
Affiliation(s)
- José H. Zagal
- Universidad de Santiago de Chile, Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Casilla 40, Correo 33, Santiago 9170022, Chile
| | - Sophie Griveau
- Chimie ParisTech, Unité de Pharmacologie Chimique et Génétique et Imagerie, 11 rue Pierre et Marie Curie, 75005 Paris, France
- CNRS, UMR 8151, 75005 Paris, France
- Université Paris Descartes, 75006 Paris, France
- INSERM, U1022, 75005 Paris, France
| | - Mireya Santander-Nelli
- Universidad de Santiago de Chile, Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Casilla 40, Correo 33, Santiago 9170022, Chile
| | - Silvia Gutierrez Granados
- Universidad de Guanajuato, División de Ciencias Naturales y Exactas, Departamento de Química, Guanajuato, Mexico
| | - Fethi Bedioui
- Chimie ParisTech, Unité de Pharmacologie Chimique et Génétique et Imagerie, 11 rue Pierre et Marie Curie, 75005 Paris, France
- CNRS, UMR 8151, 75005 Paris, France
- Université Paris Descartes, 75006 Paris, France
- INSERM, U1022, 75005 Paris, France
| |
Collapse
|
8
|
A nanomaterial composed of cobalt nanoparticles, poly(3,4-ethylenedioxythiophene) and graphene with high electrocatalytic activity for nitrite oxidation. Mikrochim Acta 2012. [DOI: 10.1007/s00604-012-0794-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Pandey PC, Pandey AK. Size-dependence enhancement in electrocatalytic activity of NiHCF-gold nanocomposite: potential application in electrochemical sensing. Analyst 2012; 137:3306-13. [DOI: 10.1039/c2an35452g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Guan Q, Noblitt SD, Henry CS. Electrophoretic separations in poly(dimethylsiloxane) microchips using a mixture of ionic and zwitterionic surfactants. Electrophoresis 2012; 33:379-87. [PMID: 22222982 PMCID: PMC3516918 DOI: 10.1002/elps.201100259] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The use of mixtures of ionic and zwitterionic surfactants in poly(dimethylsiloxane) (PDMS) microchips is reported. The effect of surfactant concentration on electroosmotic flow (EOF) was studied for a single anionic surfactant (sodium dodecyl sulfate, SDS), a single zwitterionic surfactant (N-tetradecylammonium-N,N-dimethyl-3-ammonio-1-propanesulfonate, TDAPS), and a mixed SDS/TDAPS surfactant system. SDS increased the EOF as reported previously while TDAPS showed an initial increase in EOF followed by a reduction at higher concentrations. When TDAPS was added to a solution containing SDS, the EOF decreased in a concentration-dependent manner. The EOF for all three surfactant systems followed expected pH trends, with increasing EOF at higher pH. The mixed surfactant system allowed tuning of the EOF across a range of pH and concentration conditions. After establishing the EOF behavior, the adsorption/desorption kinetics were measured and showed a slower adsorption/desorption rate for TDAPS than SDS. Finally, the separation and electrochemical detection of model catecholamines in buffer and reduced glutathione in red blood cell lysate using the mixed surfactant system were explored. The mixed surfactant system provided shorter analysis times and/or improved resolution when compared to the single surfactant systems.
Collapse
Affiliation(s)
- Qian Guan
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | |
Collapse
|
11
|
Sameenoi Y, Mensack MM, Boonsong K, Ewing R, Dungchai W, Chailapakul O, Cropek DM, Henry CS. Poly(dimethylsiloxane) cross-linked carbon paste electrodes for microfluidic electrochemical sensing. Analyst 2011; 136:3177-84. [DOI: 10.1039/c1an15335h] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|