1
|
Zou Y, Xia T, Zuo Y, Gu Y, Zhang J, Wei J, Qian J, Hao N, Wang K. Dual-mode sensing chip for photoelectrochemical and electrochromic visual determination of deoxynivalenol mycotoxin. Mikrochim Acta 2023; 190:466. [PMID: 37953315 DOI: 10.1007/s00604-023-06057-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023]
Abstract
The successful development of a dual-mode sensing chip for deoxynivalenol (DON) detection using photoelectrochemical (PEC) and electrochromic visualization techniques is reported. By laser etching technology, different functional areas, including the photoanode, the cathode, and the electrochromic area, are fabricated on indium tin oxide (ITO) glass. Then, these three areas are further respectively modified with PEC active materials, platinum nanoparticles, and Prussian blue. Under light illumination, photocurrents generate between the photoanode and the cathode due to the separation of photo-induced electrons and holes in the TiO2/3DNGH material. Meanwhile, the photo-induced electrons are transferred to Prussian blue on the visualization area, which will be reduced to colorless Prussian white. The binding of DON molecules and aptamers can promote electron transfer and reduce the recombination of electrons and holes, allowing for simultaneous quantitative detection of DON using either the photocurrent or color change. The sensor chip has a broad detection range of DON concentrations of 1 fg⋅mL-1 to 100 pg⋅mL-1 in the PEC mode with the limit of detection of 0.37 fg⋅mL-1, and 1 to 250 ng⋅mL-1 in the visualization mode with the limit of detection of 0.51 ng⋅mL-1. This portable dual-mode sensor chip can be used in both laboratory and field settings without the need for specialized instruments, making it a powerful tool for ensuring food safety. At the same time, the analysis of the standard addition method of the actual sample by using the sensor chip shows that, in the PEC mode, the recoveries of the dual-mode aptasensor chip were 91.3 to 99.0% with RSD values of 1.73~2.55%, and in visualization mode, the recoveries of the dual-mode aptasensor chip were 99.2 to 102.0% with RSD values of 1.00~6.21%, which indicate good accuracy and reproducibility.
Collapse
Affiliation(s)
- Yi Zou
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, People's Republic of China
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Tiantian Xia
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Yanli Zuo
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Yu Gu
- Institute for Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Jiadong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, School of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Jie Wei
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Nan Hao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, People's Republic of China.
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| |
Collapse
|
2
|
Duanghathaipornsuk S, Farrell EJ, Alba-Rubio AC, Zelenay P, Kim DS. Detection Technologies for Reactive Oxygen Species: Fluorescence and Electrochemical Methods and Their Applications. BIOSENSORS 2021; 11:30. [PMID: 33498809 PMCID: PMC7911324 DOI: 10.3390/bios11020030] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) have been found in plants, mammals, and natural environmental processes. The presence of ROS in mammals has been linked to the development of severe diseases, such as diabetes, cancer, tumors, and several neurodegenerative conditions. The most common ROS involved in human health are superoxide (O2•-), hydrogen peroxide (H2O2), and hydroxyl radicals (•OH). Organic and inorganic molecules have been integrated with various methods to detect and monitor ROS for understanding the effect of their presence and concentration on diseases caused by oxidative stress. Among several techniques, fluorescence and electrochemical methods have been recently developed and employed for the detection of ROS. This literature review intends to critically discuss the development of these techniques to date, as well as their application for in vitro and in vivo ROS detection regarding free-radical-related diseases. Moreover, important insights into and further steps for using fluorescence and electrochemical methods in the detection of ROS are presented.
Collapse
Affiliation(s)
| | - Eveline J Farrell
- Department of Chemical Engineering, The University of Toledo, Toledo, OH 43606, USA
| | - Ana C Alba-Rubio
- Department of Chemical Engineering, The University of Toledo, Toledo, OH 43606, USA
| | - Piotr Zelenay
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Dong-Shik Kim
- Department of Chemical Engineering, The University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
3
|
Liu J, Cai C, Wang Y, Liu Y, Huang L, Tian T, Yao Y, Wei J, Chen R, Zhang K, Liu B, Qian K. A Biomimetic Plasmonic Nanoreactor for Reliable Metabolite Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903730. [PMID: 32440487 PMCID: PMC7237842 DOI: 10.1002/advs.201903730] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/30/2020] [Accepted: 02/17/2020] [Indexed: 05/20/2023]
Abstract
Reliable monitoring of metabolites in biofluids is critical for diagnosis, treatment, and long-term management of various diseases. Although widely used, existing enzymatic metabolite assays face challenges in clinical practice primarily due to the susceptibility of enzyme activity to external conditions and the low sensitivity of sensing strategies. Inspired by the micro/nanoscale confined catalytic environment in living cells, the coencapsulation of oxidoreductase and metal nanoparticles within the nanopores of macroporous silica foams to fabricate all-in-one bio-nanoreactors is reported herein for use in surface-enhanced Raman scattering (SERS)-based metabolic assays. The enhancement of catalytical activity and stability of enzyme against high temperatures, long-time storage or proteolytic agents are demonstrated. The nanoreactors recognize and catalyze oxidation of the metabolite, and provide ratiometric SERS response in the presence of the enzymatic by-product H2O2, enabling sensitive metabolite quantification in a "sample in and answer out" manner. The nanoreactor makes any oxidoreductase-responsible metabolite a candidate for quantitative SERS sensing, as shown for glucose and lactate. Glucose levels of patients with bacterial infection are accurately analyzed with only 20 µL of cerebrospinal fluids, indicating the potential application of the nanoreactor in vitro clinical testing.
Collapse
Affiliation(s)
- Jiangang Liu
- Department of NeurosurgeryShanghai Children's HospitalMed‐X Research Institute and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200062China
| | - Chenlei Cai
- Department of Medical OncologyShanghai Pulmonary HospitalTongji University School of MedicineShanghai200433China
| | - Yuning Wang
- Department of ChemistryInstitutes of Biomedical Sciences and State Key Lab of Molecular Engineering of PolymersFudan UniversityShanghai200438China
| | - Yu Liu
- Department of NeurosurgeryShanghai Children's HospitalMed‐X Research Institute and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200062China
| | - Lin Huang
- Department of NeurosurgeryShanghai Children's HospitalMed‐X Research Institute and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200062China
| | - Tongtong Tian
- Department of ChemistryInstitutes of Biomedical Sciences and State Key Lab of Molecular Engineering of PolymersFudan UniversityShanghai200438China
| | - Yuanyuan Yao
- Department of ChemistryInstitutes of Biomedical Sciences and State Key Lab of Molecular Engineering of PolymersFudan UniversityShanghai200438China
| | - Jia Wei
- Department of NeurosurgeryShanghai Children's HospitalMed‐X Research Institute and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200062China
| | - Ruoping Chen
- Department of NeurosurgeryShanghai Children's HospitalMed‐X Research Institute and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200062China
| | - Kun Zhang
- Department of NeurosurgeryShanghai Children's HospitalMed‐X Research Institute and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200062China
| | - Baohong Liu
- Department of ChemistryInstitutes of Biomedical Sciences and State Key Lab of Molecular Engineering of PolymersFudan UniversityShanghai200438China
| | - Kun Qian
- Department of NeurosurgeryShanghai Children's HospitalMed‐X Research Institute and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200062China
| |
Collapse
|
4
|
Liu W, Sun S, Huang Y, Wang R, Xu J, Liu X, Qian K. Label-Free Detection of Transferrin Receptor by a Designed Ligand-Protein Sensor. Chem Asian J 2019; 15:56-60. [PMID: 31777201 DOI: 10.1002/asia.201901512] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/03/2019] [Indexed: 12/13/2022]
Abstract
Advanced detection of biomarkers in biofluids plays an important role in disease diagnosis and prognosis. Current techniques with pre-labelling suffer from high cost and complicated operation, etc. Herein, we designed a label-free electrochemical biosensor for rapid detection of transferrin receptor with desirable linear range, sensitivity, specificity, reproducibility, and stability for practical applications.
Collapse
Affiliation(s)
- Wanshan Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Shiyu Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Yida Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Ruimin Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jiale Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Xiyuan Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Kun Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| |
Collapse
|
5
|
Immobilization of cytochrome c on polyaniline/polypyrrole/carboxylated multi-walled carbon nanotube/glassy carbon electrode: biosensor fabrication. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04300-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Zhang R, Rejeeth C, Xu W, Zhu C, Liu X, Wan J, Jiang M, Qian K. Label-Free Electrochemical Sensor for CD44 by Ligand-Protein Interaction. Anal Chem 2019; 91:7078-7085. [PMID: 30942566 DOI: 10.1021/acs.analchem.8b05966] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ru Zhang
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Chandrababu Rejeeth
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Wei Xu
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Chuanying Zhu
- Department of Oncology, Xinhua Hospital, Shanghai Jiao Tong University Medical School, Shanghai 200092, P. R. China
| | - Xiyuan Liu
- Department of Oncology, Xinhua Hospital, Shanghai Jiao Tong University Medical School, Shanghai 200092, P. R. China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Mawei Jiang
- Department of Oncology, Xinhua Hospital, Shanghai Jiao Tong University Medical School, Shanghai 200092, P. R. China
| | - Kun Qian
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| |
Collapse
|
7
|
Immobilization of cytochrome c and its application as electrochemical biosensors. Talanta 2018; 176:195-207. [DOI: 10.1016/j.talanta.2017.08.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 01/19/2023]
|
8
|
Alvarez-Paggi D, Hannibal L, Castro MA, Oviedo-Rouco S, Demicheli V, Tórtora V, Tomasina F, Radi R, Murgida DH. Multifunctional Cytochrome c: Learning New Tricks from an Old Dog. Chem Rev 2017; 117:13382-13460. [DOI: 10.1021/acs.chemrev.7b00257] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Damián Alvarez-Paggi
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Luciana Hannibal
- Department
of Pediatrics, Universitätsklinikum Freiburg, Mathildenstrasse 1, Freiburg 79106, Germany
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - María A. Castro
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Santiago Oviedo-Rouco
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Veronica Demicheli
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Veronica Tórtora
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Florencia Tomasina
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Rafael Radi
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
9
|
Wei X, Liu Z, Jin X, Huang L, Gurav DD, Sun X, Liu B, Ye J, Qian K. Plasmonic nanoshells enhanced laser desorption/ionization mass spectrometry for detection of serum metabolites. Anal Chim Acta 2017; 950:147-155. [DOI: 10.1016/j.aca.2016.11.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/30/2016] [Accepted: 11/04/2016] [Indexed: 12/01/2022]
|
10
|
Yang DH, Shin MJ, Choi SM, Lee CS, Shin JS. Cytochrome c assembly on fullerene nanohybrid metal oxide ultrathin films. RSC Adv 2016. [DOI: 10.1039/c5ra21928k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The immobilization of Cyt. c (cytochrome c) on C60 (fullerene) nanohybrid TiO2 (titanium dioxide) gel films assembled with C60, Ti(O–nBu)4 and Cyt. c was realized by a surface sol–gel process.
Collapse
Affiliation(s)
- Do-Hyeon Yang
- Department of Chemistry
- Chungbuk National University
- Cheongju
- Korea
- R&D Lab
| | - Min Jae Shin
- Department of Chemistry and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-806
- Korea
| | - Sung Mook Choi
- R&D Lab
- PNS Technologies, Inc
- 301 Yeonsung University
- Anyang-si
- Korea
| | - Chang-Soo Lee
- Bionanotechnology Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Deajeon 305-806
- Korea
- Nanobiotechnology (Major)
| | - Jae Sup Shin
- Department of Chemistry
- Chungbuk National University
- Cheongju
- Korea
| |
Collapse
|
11
|
Gan J, Wei X, Li Y, Wu J, Qian K, Liu B. Designer SiO2@Au nanoshells towards sensitive and selective detection of small molecules in laser desorption ionization mass spectrometry. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1715-23. [DOI: 10.1016/j.nano.2015.06.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/10/2015] [Accepted: 06/15/2015] [Indexed: 12/25/2022]
|
12
|
He Q, Badu-Tawiah AK, Chen S, Xiong C, Liu H, Zhou Y, Hou J, Zhang N, Li Y, Xie X, Wang J, Mao L, Nie Z. In situ bioconjugation and ambient surface modification using reactive charged droplets. Anal Chem 2015; 87:3144-8. [PMID: 25688934 DOI: 10.1021/ac504111f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular ions are generated in induced electrospray ionization, and they can be transported to grounded ambient surfaces in the form of charged microdroplets. Efficient amide bonds formation between amines and carboxylic acids were observed inside charged droplets during transfer to the surface. Biomolecules derivatized using this method were self-assembled on a bare gold surface via Au-S bonds under the charged microdroplet environment. Cyclic voltammetric analysis of the self-assembled molecular film showed accelerated protein derivatization with cysteine, which allowed the covalent immobilization of the protein to the gold surface. Cytochrome C-functionalized electrodes prepared using the induced dual nanoelectrospray process showed bioactivity toward aqueous solutions of hydrogen peroxide below 50 μM. In effect, we have developed a method that allows derivatization of biomolecules and their immobilization at ambient surfaces in a single experimental step.
Collapse
Affiliation(s)
- Qing He
- †Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Abraham K Badu-Tawiah
- ‡Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Suming Chen
- †Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,‡Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Caiqiao Xiong
- †Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huihui Liu
- †Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yueming Zhou
- †Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jian Hou
- †Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ning Zhang
- †Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yafeng Li
- †Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaobo Xie
- †Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianing Wang
- †Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lanqun Mao
- †Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zongxiu Nie
- †Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
13
|
Solovieva SE, Safiullin RA, Kochetkov EN, Melnikova NB, Kadirov MK, Popova EV, Antipin IS, Konovalov AI. Langmuir monolayers and thin films of amphifilic thiacalix[4]arenes. Properties and matrix for the immobilization of cytochrome c. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:15153-15161. [PMID: 25435075 DOI: 10.1021/la504379v] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Formation and properties of Langmuir films of thiacalix[4]arene (TCA) derivatives containing N-donor groups on the lower rim (Y═O(CH2)3CN; OCH2CN; NH2; OCH2ArCN-p) in 1,3-alternate conformation on aqueous subphase and solid substrates have been studied. Only tetra-cyanopropoxy-p-tert-butylthiacalix[4]arene 1 forms a typical monomolecular layer with perpendicular orientation of the macrocycle relative to the water-air interface that is able to immobilize cytochrome c in the entire range of the surface pressure. Obtained monolayers were transferred by Langmuir-Schaefer technique onto quartz, indium-tin oxide (ITO), and silicon. It was demonstrated that protein activity is retained after immobilization on the substrate.
Collapse
Affiliation(s)
- Svetlana E Solovieva
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences , Arbuzov st. 8, Kazan 420088, Russia
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Márquez J, Cházaro-Ruiz LF, Zimányi L, Palestino G. Immobilization strategies and electrochemical evaluation of porous silicon based cytochrome c electrode. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.05.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
A silica-dextran nanocomposite as a novel matrix for immobilization of horseradish peroxidase, and its application to sensing hydrogen peroxide. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1065-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Walcarius A, Minteer SD, Wang J, Lin Y, Merkoçi A. Nanomaterials for bio-functionalized electrodes: recent trends. J Mater Chem B 2013; 1:4878-4908. [DOI: 10.1039/c3tb20881h] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
|
18
|
Wang Y, Bian X, Liao L, Zhu J, Guo K, Kong J, Liu B. Electrochemistry and biosensing activity of cytochrome c immobilized on a mesoporous interface assembled from carbon nanospheres. Mikrochim Acta 2012. [DOI: 10.1007/s00604-012-0834-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
ITO electrode modified by a gold ion implantation technique for direct electrocatalytic sensing of hydrogen peroxide. Mikrochim Acta 2012. [DOI: 10.1007/s00604-012-0792-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Yao H, Liu H, Sun MJ, Gong L. Amperometric biosensor for hydrogen peroxide based on the co-electrodeposition of horseradish peroxidase and methylene blue on an ITO electrode modified with an anodic aluminum oxide template. Mikrochim Acta 2011. [DOI: 10.1007/s00604-011-0750-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|