1
|
Electrodeposition of Cobalt Oxides on Carbon Nanotubes for Sensitive Bromhexine Sensing. Molecules 2022; 27:molecules27134078. [PMID: 35807327 PMCID: PMC9268198 DOI: 10.3390/molecules27134078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 11/25/2022] Open
Abstract
We develop an electrochemical sensor for the determination of bromhexine hydrochloride (BHC), a widely use mucolytic drug. The sensor is prepared by electrodeposition of cobalt oxides (CoOx) on a glassy carbon electrode modified with carboxylated single-walled carbon nanotubes (SWCNT). A synergistic effect between CoOx and SWCNT is observed, leading to a significant improvement in the BHC electrooxidation current. Based on cyclic voltammetry studies at varying scan rates, we conclude that the electrochemical oxidation of BHC is under mixed diffusion–adsorption control. The proposed sensor allows the amperometric determination of BHC in a linear range of 10–500 µM with a low applied voltage of 0.75 V. The designed sensor provides reproducible measurements, is not affected by common interfering substances, and shows excellent performance for the analysis of BHC in pharmaceutical preparations.
Collapse
|
2
|
Shenashen MA, Emran MY, El Sabagh A, Selim MM, Elmarakbi A, El-Safty SA. Progress in sensory devices of pesticides, pathogens, coronavirus, and chemical additives and hazards in food assessment: Food safety concerns. PROGRESS IN MATERIALS SCIENCE 2022; 124:100866. [DOI: 10.1016/j.pmatsci.2021.100866] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
3
|
Novel (CH6N3+, NH3+)-functionalized and nitrogen doped Co3O4 thin film electrochemical sensor for nanomolar detection of nitrite in neutral pH. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Tian Y, Chang ZH, Zhang YC, Wang XL, Chen YZ, Liu QQ, Yu L. Two Anderson-type POM-based metal-organic complexes as multifunctional materials for electrocatalytic sensing and zinc-ion batteries. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Zhe T, Li M, Li F, Li R, Bai F, Bu T, Jia P, Wang L. Integrating electrochemical sensor based on MoO 3/Co 3O 4 heterostructure for highly sensitive sensing of nitrite in sausages and water. Food Chem 2021; 367:130666. [PMID: 34343805 DOI: 10.1016/j.foodchem.2021.130666] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022]
Abstract
Considering excess nitrites are detrimental to the human body and environment, designing a rapid, sensitive, and real-time quantitative determination for nitrite is of great significance for environmental preservation and public health. In this paper, Co3O4 nanoflowers coupled with ultrafine MoO3 nanoparticles (MoO3/Co3O4) are obtained via a hybrid electrochemical deposition strategy (HED). The as-designed MoO3/Co3O4/CC integrating electrode exhibits superior electrocatalytic properties towards nitrite oxidation, owing to the synergistic effect between MoO3 and Co3O4 caused by the heterostructure of MoO3/Co3O4. The electrode achieved a low response time of 2 s, an excellent sensitivity of 1704.1 μA mM-1 cm-2, and a low limit of detection of 0.075 μM (S/N = 3). Furthermore, the electrode displays promise for nitrite detection in complex food such as water and sausages samples. Our study will provide a significant strategy for the application of bimetallic heterostructure to explore the design of sensing interfaces.
Collapse
Affiliation(s)
- Taotao Zhe
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Mingyan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Fan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Ruixia Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Feier Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Tong Bu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Pei Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
6
|
Alotaibi N, Hammud HH, Al Otaibi N, Prakasam T. Electrocatalytic Properties of 3D Hierarchical Graphitic Carbon-Cobalt Nanoparticles for Urea Oxidation. ACS OMEGA 2020; 5:26038-26048. [PMID: 33073130 PMCID: PMC7558028 DOI: 10.1021/acsomega.0c03477] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
A 3D hierarchical graphitic carbon nanostructure encapsulating cobalt(0)/cobalt oxide nanoparticles (CoGC) has been prepared by solid-state pyrolysis of a mixture of anthracene and cobalt 2,2'-bipyridine terephthalate complex at 850 °C. Based on the Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods, the prepared material has high surface area (186.8 m2 g-1) with an average pore width of 205.5 Å. XPS reveals the functionalization of carbon with different oxygen-containing groups, such as carboxylic acid groups. The presence of metallic cobalt nanoparticles with cubic and hexagonal crystalline structures encapsulated in graphitized carbon is confirmed using XRD and TEM. Raman spectroscopy indicates a graphitization degree of I D/I G = 1.02. CoGC was cast onto a glassy carbon electrode and used for urea electrooxidation in an alkaline solution. The electrochemical investigation shows that the newly prepared CoGC has a promising electrocatalytic activity toward urea. The specific activity is 128 mA cm-1 mg-1 for the electrooxidation of 0.3 M urea in 1 M KOH at a relatively low onset potential (0.31 V vs Ag/AgCl). It can be mainly attributed to the morphological structure of carbon and the high reactivity of cobalt nanoparticles. The calculated charge-transfer resistance, R ct, of the modified electrode in the presence of urea (10.95 Ω) is significantly lower than that in the absence of urea (113.5 Ω), which indicates electrocatalytic activity. The value of charge-transfer rate constant, k s, for the anodic reaction is 0.0058 s-1. Electrocatalytic durability in 1000 s chronoamperometry of the modified electrode suggests high structure stability. The modified electrode retained about 60% of its activity after 100 cycles as indicated by linear sweep voltammetry.
Collapse
Affiliation(s)
- Nusaybah Alotaibi
- Department
of Chemistry, College of Science, King Faisal
University, Al-Ahsa 31982, Saudi Arabia
| | - Hassan H. Hammud
- Department
of Chemistry, College of Science, King Faisal
University, Al-Ahsa 31982, Saudi Arabia
| | - Nasreen Al Otaibi
- Department
of Chemistry, College of Science, King Faisal
University, Al-Ahsa 31982, Saudi Arabia
| | - Thirumurugan Prakasam
- Chemistry
Program, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| |
Collapse
|
7
|
Asiri AM, Adeosun WA, Marwani HM, Rahman MM. Homopolymerization of 3-aminobenzoic acid for enzyme-free electrocatalytic assay of nitrite ions. NEW J CHEM 2020. [DOI: 10.1039/c9nj06058h] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We describe non-enzymatic novel detection of nitrite ions in various matrices on the surface of poly-3-aminobenzoic acid.
Collapse
Affiliation(s)
- Abdullah M. Asiri
- Department of Chemistry
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Waheed A. Adeosun
- Department of Chemistry
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Hadi M. Marwani
- Department of Chemistry
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Mohammed M. Rahman
- Department of Chemistry
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| |
Collapse
|
8
|
Synthesis of porous nanododecahedron Co3O4/C and its application for nonenzymatic electrochemical detection of nitrite. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2019.06.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Abdel Hameed R, Medany SS. Evaluation of core-shell structured cobalt@platinum nanoparticles-decorated graphene for nitrite sensing. SYNTHETIC METALS 2019; 247:67-80. [DOI: 10.1016/j.synthmet.2018.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
|
10
|
Patri SB, Adarakatti PS, Malingappa P. Silver Nanoparticles-Chitosan Composite Embedded Graphite Screen-Printed Electrodes as a Novel Electrochemical Platform in the Measurement of Trace Level Nitrite: Application to Milk Powder Samples. CURR ANAL CHEM 2018. [DOI: 10.2174/1573411014666180703142146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background:Nitrites can exert acute toxic effects in humans. It is widely used as a preservative in dairy and meat products. The nitrites form N-nitrosamines, which are potential carcinogens and cause detrimental health effects. Herein we report a disposable graphite screen-printed sensor developed using silver metal nano particle embedded chitosan composite in the quantification of nitrite at trace level.Methods:Conventional methods possess various limitations. Electrochemical methods provide an ideal platform for trace nitrite analysis. The prepared composite has been characterized by UV-Visible spectrometry, SEM, EDS and XRD techniques. The proposed sensor has been fabricated by using graphite screen-printed electrodes through drop coating of the composite material. The redox behavior and its application of the fabricated electrode have been studied using cyclic and anodic stripping voltammetric methods.Results:Graphite screen-printed electrodes after modification have been used to identify the electrocatalytic behavior of nitrite oxidation in an aqueous medium. All the parameters influencing the analytical signal have been optimized and incorporated in the recommended procedure. The proposed sensor has been used to measure the nitrite levels from commercially available milk powder samples and the results have been compared with the standard protocol. The results of the proposed sensor are in good agreement with the standard protocol.Conclusion:Ag metal nanoparticles have been embedded in chitosan matrix and used as a composite material in the chemical modification of graphite screen-printed electrodes. GSPEs are easy to fabricate. They provide wide linear working range i.e. 30 - 1140 µM of nitrite. The sensor is highly stable, reproducible and provides a very low detection limit of 1.84 µM. The method has been applied to measure trace level nitrite from milk powder samples.
Collapse
Affiliation(s)
- Suma B. Patri
- Department of Chemistry, Bangalore University, Central College Campus, Bengaluru - 560 001, India
| | | | - Pandurangappa Malingappa
- Department of Chemistry, Bangalore University, Central College Campus, Bengaluru - 560 001, India
| |
Collapse
|
11
|
Zhang J, Zhang Y, Zhou J, Wang L. Construction of a highly sensitive non-enzymatic nitrite sensor using electrochemically reduced holey graphene. Anal Chim Acta 2018; 1043:28-34. [DOI: 10.1016/j.aca.2018.08.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/15/2018] [Accepted: 08/24/2018] [Indexed: 01/08/2023]
|
12
|
Sudha V, Mohanty SA, Thangamuthu R. Facile synthesis of Co3O4 disordered circular sheets for selective electrochemical determination of nitrite. NEW J CHEM 2018. [DOI: 10.1039/c8nj02639d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The electrochemical nitrite sensing properties of a cobalt oxide (Co3O4) modified glassy carbon electrode were investigated.
Collapse
Affiliation(s)
- Velayutham Sudha
- Electrochemical Materials Science (ECMS) Division
- CSIR-Central Electrochemical Research Institute (CSIR-CECRI)
- Karaikudi-630 003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | | | - Rangasamy Thangamuthu
- Electrochemical Materials Science (ECMS) Division
- CSIR-Central Electrochemical Research Institute (CSIR-CECRI)
- Karaikudi-630 003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
13
|
Otto T, Zones SI, Hong Y, Iglesia E. Synthesis of highly dispersed cobalt oxide clusters encapsulated within LTA zeolites. J Catal 2017. [DOI: 10.1016/j.jcat.2017.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Huang H, Lv L, Xu F, Liao J, Liu S, Wen HR. PrFeO3-MoS2 nanosheets for use in enhanced electro-oxidative sensing of nitrite. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2446-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Muthumariappan A, Govindasamy M, Chen SM, Sakthivel K, Mani V. Screen-printed electrode modified with a composite prepared from graphene oxide nanosheets and Mn3O4 microcubes for ultrasensitive determination of nitrite. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2379-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Simple synthesis of hierarchical AuPt alloy nanochains for construction of highly sensitive hydrazine and nitrite sensors. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:1317-1325. [DOI: 10.1016/j.msec.2017.03.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/28/2016] [Accepted: 03/04/2017] [Indexed: 01/16/2023]
|
17
|
A nanocomposite consisting of flower-like cobalt nanostructures, graphene oxide and polypyrrole for amperometric sensing of nitrite. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2247-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Nagles E, Ibarra L, Llanos JP, Hurtado J, Garcia-Beltrán O. Development of a novel electrochemical sensor based on cobalt(II) complex useful in the detection of dopamine in presence of ascorbic acid and uric acid. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.01.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Zhang S, Li B, Sheng Q, Zheng J. Electrochemical sensor for sensitive determination of nitrite based on the CuS–MWCNT nanocomposites. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.03.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Etesami M, Mohamed N. Preparation of Pt/MWCNTs Catalyst by Taguchi Method for Electrooxidation of Nitrite. JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1134/s1061934816020040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Huang SS, Liu L, Mei LP, Zhou JY, Guo FY, Wang AJ, Feng JJ. Electrochemical sensor for nitrite using a glassy carbon electrode modified with gold-copper nanochain networks. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1717-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Facile synthesis of TiO2-functionalized graphene nanosheet-supported Ag catalyst and its electrochemical oxidation of nitrite. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2015. [DOI: 10.1007/s13738-015-0625-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Highly sensitive determination of nitrite using a carbon ionic liquid electrode modified with Fe3O4 magnetic nanoparticle. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2015. [DOI: 10.1007/s13738-015-0594-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Prasad R, Bhat BR. Self-assembly synthesis of Co3O4/multiwalled carbon nanotube composites: an efficient enzyme-free glucose sensor. NEW J CHEM 2015. [DOI: 10.1039/c5nj01447f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrochemical detection and sensing of glucose by direct glucose oxidation using a non-enzymatic sensor with high efficiency and greater stability.
Collapse
Affiliation(s)
- Raghavendra Prasad
- Department of Chemistry
- National Institute of Technology Karnataka
- Srinivasnagar-575025
- India
| | | |
Collapse
|
25
|
Meng Z, Zheng J, Li Q. A nitrite electrochemical sensor based on electrodeposition of zirconium dioxide nanoparticles on carbon nanotubes modified electrode. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2014. [DOI: 10.1007/s13738-014-0565-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
26
|
Wang J, Zhou H, Fan D, Zhao D, Xu C. A glassy carbon electrode modified with nanoporous PdFe alloy for highly sensitive continuous determination of nitrite. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1432-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Ning D, Zhang H, Zheng J. Electrochemical sensor for sensitive determination of nitrite based on the PAMAM dendrimer-stabilized silver nanoparticles. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2013.12.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Li SJ, Du JM, Zhang JP, Zhang MJ, Chen J. A glassy carbon electrode modified with a film composed of cobalt oxide nanoparticles and graphene for electrochemical sensing of H2O2. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1164-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Gligor D, Walcarius A. Glassy carbon electrode modified with a film of poly(Toluidine Blue O) and carbon nanotubes for nitrite detection. J Solid State Electrochem 2014. [DOI: 10.1007/s10008-013-2365-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
A sensitive and selective nitrite sensor based on a glassy carbon electrode modified with gold nanoparticles and sulfonated graphene. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-0999-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Kundu S, Mukadam MD, Yusuf SM, Jayachandran M. Formation of shape-selective magnetic cobalt oxide nanowires: environmental application in catalysis studies. CrystEngComm 2013. [DOI: 10.1039/c2ce26382c] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Majidi MR, Naseri A, Panahian S, Baj RFB. Electrocatalytic Oxidation and Determination of Nitrite at Multi-walled Carbon Nanotubes Modified Carbon Ceramic Electrode. J CHIN CHEM SOC-TAIP 2012. [DOI: 10.1002/jccs.201200365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
A nanomaterial composed of cobalt nanoparticles, poly(3,4-ethylenedioxythiophene) and graphene with high electrocatalytic activity for nitrite oxidation. Mikrochim Acta 2012. [DOI: 10.1007/s00604-012-0794-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|