1
|
Madaci A, Suwannin P, Raffin G, Hangouet M, Martin M, Ferkous H, Bouzid A, Bausells J, Elaissari A, Errachid A, Jaffrezic-Renault N. A Sensitive Micro Conductometric Ethanol Sensor Based on an Alcohol Dehydrogenase-Gold Nanoparticle Chitosan Composite. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2316. [PMID: 37630900 PMCID: PMC10458242 DOI: 10.3390/nano13162316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
In this paper, a microconductometric sensor has been designed, based on a chitosan composite including alcohol dehydrogenase-and its cofactor-and gold nanoparticles, and was calibrated by differential measurements in the headspace of aqueous solutions of ethanol. The role of gold nanoparticles (GNPs) was crucial in improving the analytical performance of the ethanol sensor in terms of response time, sensitivity, selectivity, and reproducibility. The response time was reduced to 10 s, compared to 21 s without GNPs. The sensitivity was 416 µS/cm (v/v%)-1 which is 11.3 times higher than without GNPs. The selectivity factor versus methanol was 8.3, three times higher than without GNPs. The relative standard deviation (RSD) obtained with the same sensor was 2%, whereas it was found to be 12% without GNPs. When the air from the operator's mouth was analyzed just after rinsing with an antiseptic mouthwash, the ethanol content was very high (3.5 v/v%). The background level was reached only after rinsing with water.
Collapse
Affiliation(s)
- Anis Madaci
- Institute of Analytical Sciences, University of Lyon, 69100 Villeurbanne, France; (A.M.); (P.S.); (G.R.); (M.H.); (M.M.); (A.E.); (A.E.)
- Laboratory of Materials and Electronics Systems, University El-Bachir El-Ibrahimi Bordj Bou Arreridj, Bordj Bou Arreridj 34000, Algeria;
| | - Patcharapan Suwannin
- Institute of Analytical Sciences, University of Lyon, 69100 Villeurbanne, France; (A.M.); (P.S.); (G.R.); (M.H.); (M.M.); (A.E.); (A.E.)
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Guy Raffin
- Institute of Analytical Sciences, University of Lyon, 69100 Villeurbanne, France; (A.M.); (P.S.); (G.R.); (M.H.); (M.M.); (A.E.); (A.E.)
| | - Marie Hangouet
- Institute of Analytical Sciences, University of Lyon, 69100 Villeurbanne, France; (A.M.); (P.S.); (G.R.); (M.H.); (M.M.); (A.E.); (A.E.)
| | - Marie Martin
- Institute of Analytical Sciences, University of Lyon, 69100 Villeurbanne, France; (A.M.); (P.S.); (G.R.); (M.H.); (M.M.); (A.E.); (A.E.)
| | - Hana Ferkous
- Laboratory of Mechanical Engineering and Materials, Faculty of Technology, University of Skikda, Skikda 21000, Algeria;
| | - Abderrazak Bouzid
- Laboratory of Materials and Electronics Systems, University El-Bachir El-Ibrahimi Bordj Bou Arreridj, Bordj Bou Arreridj 34000, Algeria;
| | - Joan Bausells
- El Consejo Superior de Investigaciones Científicas (CSIC), Centro Nacional de Microelectrónica (CNM), Institut de Microelectrònica de Barcelona (IMB), Campus UAB, 08193 Barcelona, Spain;
| | - Abdelhamid Elaissari
- Institute of Analytical Sciences, University of Lyon, 69100 Villeurbanne, France; (A.M.); (P.S.); (G.R.); (M.H.); (M.M.); (A.E.); (A.E.)
| | - Abdelhamid Errachid
- Institute of Analytical Sciences, University of Lyon, 69100 Villeurbanne, France; (A.M.); (P.S.); (G.R.); (M.H.); (M.M.); (A.E.); (A.E.)
| | - Nicole Jaffrezic-Renault
- Institute of Analytical Sciences, University of Lyon, 69100 Villeurbanne, France; (A.M.); (P.S.); (G.R.); (M.H.); (M.M.); (A.E.); (A.E.)
| |
Collapse
|
2
|
Soltani Firouz M, Mohi-Alden K, Omid M. A critical review on intelligent and active packaging in the food industry: Research and development. Food Res Int 2021; 141:110113. [PMID: 33641980 DOI: 10.1016/j.foodres.2021.110113] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 12/31/2022]
Abstract
The emergence of many new food products on the market with need of consumers to constantly monitor their quality until consuming, in addition to the necessity for reducing food corruption during preservation time, have led to the development of some modern packaging technologies such as intelligent packaging (IP) and active packaging (AP). The benefits of IP are detecting defects, quality monitoring and tracking the packaged food products to control the storage conditions from the production stage to the consumption stage by using various sensors and indicators such as time-temperature indicators (TTIs), gas indicators, humidity sensors, optical, calorimetric and electrochemical biosensors. While, AP helps to increase the shelf-life of products by using absorbing and diffusion systems for various materials like carbon dioxide, oxygen, and ethanol. However, there are some important issues over these emerging technologies including cost, marketability, consumer acceptance, safety and organoleptic quality of the food and emphatically environmental safety concerns. Therefore, future researches should be conducted to solve these problems and to prompt applications of IP and AP in the food industry. This paper reviews the latest innovations in these advanced packaging technologies and their applications in food industry. The IP systems namely indicators, barcoding techniques, radio frequency identification systems, sensors and biosensor are reviewed and then the latest innovations in AP methods including scavengers, diffusion systems and antimicrobial packaging are reviewed in detail.
Collapse
Affiliation(s)
- Mahmoud Soltani Firouz
- Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Iran.
| | - Khaled Mohi-Alden
- Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Iran; Department of Agricultural Machinery Engineering, Faculty of Mechanical Engineering, University of Aleppo, Syria
| | - Mahmoud Omid
- Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Iran.
| |
Collapse
|
3
|
Spectroelectrochemical operando method for monitoring a phenothiazine electrografting process on amide functionalized C-nanodots/Au hybrid electrodes. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Thungon PD, Kakoti A, Ngashangva L, Goswami P. Advances in developing rapid, reliable and portable detection systems for alcohol. Biosens Bioelectron 2017; 97:83-99. [PMID: 28577501 DOI: 10.1016/j.bios.2017.05.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/16/2017] [Accepted: 05/22/2017] [Indexed: 02/08/2023]
Abstract
Development of portable, reliable, sensitive, simple, and inexpensive detection system for alcohol has been an instinctive demand not only in traditional brewing, pharmaceutical, food and clinical industries but also in rapidly growing alcohol based fuel industries. Highly sensitive, selective, and reliable alcohol detections are currently amenable typically through the sophisticated instrument based analyses confined mostly to the state-of-art analytical laboratory facilities. With the growing demand of rapid and reliable alcohol detection systems, an all-round attempt has been made over the past decade encompassing various disciplines from basic and engineering sciences. Of late, the research for developing small-scale portable alcohol detection system has been accelerated with the advent of emerging miniaturization techniques, advanced materials and sensing platforms such as lab-on-chip, lab-on-CD, lab-on-paper etc. With these new inter-disciplinary approaches along with the support from the parallel knowledge growth on rapid detection systems being pursued for various targets, the progress on translating the proof-of-concepts to commercially viable and environment friendly portable alcohol detection systems is gaining pace. Here, we summarize the progress made over the years on the alcohol detection systems, with a focus on recent advancement towards developing portable, simple and efficient alcohol sensors.
Collapse
Affiliation(s)
- Phurpa Dema Thungon
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ankana Kakoti
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Lightson Ngashangva
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
5
|
Winther-Jensen O, Kerr R, Winther-Jensen B. Alcohol vapour detection at the three phase interface using enzyme-conducting polymer composites. Biosens Bioelectron 2014; 52:143-6. [DOI: 10.1016/j.bios.2013.08.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 11/24/2022]
|
6
|
Raseetha S, Oey I, Burritt D, Hamid N. Monitoring colour, volatiles in the headspace and enzyme activity to assess the quality of broccoli florets (Brassica oleraceaL.italicacv.BellstarandLegacy) during postharvest storage. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Siva Raseetha
- Department of Food Science; University of Otago; PO Box 56 Dunedin 9054 New Zealand
- Department of Botany; University of Otago; PO Box 56 Dunedin 9054 New Zealand
| | - Indrawati Oey
- Department of Food Science; University of Otago; PO Box 56 Dunedin 9054 New Zealand
| | - David Burritt
- Department of Botany; University of Otago; PO Box 56 Dunedin 9054 New Zealand
| | - Nazimah Hamid
- Faculty of Health and Environment Sciences; School of Applied Sciences; Auckland University of Technology; Private Bag 92006 Auckland 1142 New Zealand
| |
Collapse
|