1
|
Shirani E, Razmjou A, Asadnia M, Nordon RE, Inglis DW. Surface Modification of Polystyrene with Boronic Acid for Immunoaffinity-Based Cell Enrichment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4361-4372. [PMID: 38357828 DOI: 10.1021/acs.langmuir.3c03644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Obtaining an enriched and phenotypically pure cell population from heterogeneous cell mixtures is important for diagnostics and biosensing. Existing techniques such as fluorescent-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS) require preincubation with antibodies (Ab) and specialized equipment. Cell immunopanning removes the need for preincubation and can be done with no specialized equipment. The majority of the available antibody-mediated analyte capture techniques require a modification to the Abs for binding. In this work, no antibody modification is used because we take advantage of the carbohydrate chain in the Fc region of Ab. We use boronic acid as a cross-linker to bind the Ab to a modified surface. The process allows for functional orientation and cleavable binding of the Ab. In this study, we created an immunoaffinity matrix on polystyrene (PS), an inexpensive and ubiquitous plastic. We observed a 37% increase in Ab binding compared with that of a passive adsorption approach. The method also displayed a more consistent antibody binding with 17 times less variation in Ab loading among replicates than did the passive adsorption approach. Surface topography analysis revealed that a dextran coating reduced nonspecific antibody binding. Elemental analysis (XPS) was used to characterize the surface at different stages and showed that APBA molecules can bind upside-down on the surface. While upside-down antibodies likely remain functional, their elution behavior might differ from those bound in the desired way. Cell capture experiments show that the new surface has 43% better selectivity and 2.4-fold higher capture efficiency compared to a control surface of passively adsorbed Abs. This specific surface chemistry modification will allow the targeted capture of cells or analytes with the option of chemical detachment for further research and characterization.
Collapse
Affiliation(s)
- Elham Shirani
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Amir Razmjou
- Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, Western Australia 6027, Australia
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Robert E Nordon
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - David W Inglis
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
2
|
Kang H, Xu L, Cai Y, Liu Y, Jiang F, Xu J, Zhou W. Using boronic acid functionalization to simultaneously enhance electrical conductivity and thermoelectric performance of free-standing polythiophene film. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
In-situ fabrication of reduced graphene oxide/leucomethylene blue/platinum nanoparticles modified electrode for voltammetric determination of trace Fe(II) in seawater. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
4
|
A dually functional 4-aminophenylboronic acid dimer for voltammetric detection of hypochlorite, glucose and fructose. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2440-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Cheng T, Zhang Y, Liu X, Zhang X, Zhang H. A filter paper coated with phenylboronic acid-modified mesoporous silica for enrichment of intracellular nucleosides prior to their quantitation by HPLC. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2423-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Al-Ani LA, AlSaadi MA, Kadir FA, Hashim NM, Julkapli NM, Yehye WA. Graphene- gold based nanocomposites applications in cancer diseases; Efficient detection and therapeutic tools. Eur J Med Chem 2017; 139:349-366. [PMID: 28806615 DOI: 10.1016/j.ejmech.2017.07.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 07/07/2017] [Accepted: 07/20/2017] [Indexed: 01/09/2023]
Abstract
Early detection and efficient treatment of cancer disease remains a drastic challenge in 21st century. Throughout the bulk of funds, studies, and current therapeutics, cancer seems to aggressively advance with drug resistance strains and recurrence rates. Nevertheless, nanotechnologies have indeed given hope to be the next generation for oncology applications. According to US National cancer institute, it is anticipated to revolutionize the perspectives of cancer diagnosis and therapy. With such success, nano-hybrid strategy creates a marvelous preference. Herein, graphene-gold based composites are being increasingly studied in the field of oncology, for their outstanding performance as robust vehicle of therapeutic agents, built-in optical diagnostic features, and functionality as theranostic system. Additional modes of treatments are also applicable including photothermal, photodynamic, as well as combined therapy. This review aims to demonstrate the various cancer-related applications of graphene-gold based hybrids in terms of detection and therapy, highlighting the major attributes that led to designate such system as a promising ally in the war against cancer.
Collapse
Affiliation(s)
- Lina A Al-Ani
- Institute of Postgraduate Studies Building, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Mohammed A AlSaadi
- Institute of Postgraduate Studies Building, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia; University of Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Farkaad A Kadir
- Division of Human Biology, Faculty of Medicine, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Najihah M Hashim
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Natural Products and Drug Discovery (CENAR), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nurhidayatullaili M Julkapli
- Institute of Postgraduate Studies Building, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Wageeh A Yehye
- Institute of Postgraduate Studies Building, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
7
|
Li J, Wang Y, Sun Y, Ding C, Lin Y, Sun W, Luo C. A novel ionic liquid functionalized graphene oxide supported gold nanoparticle composite film for sensitive electrochemical detection of dopamine. RSC Adv 2017. [DOI: 10.1039/c6ra25627a] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple and sensitive electrochemical sensor for detection of dopamine has been developed based on ionic liquid functionalized graphene oxide supported gold nanoparticles (GO-IL-AuNPs) coated onto a glassy carbon electrode.
Collapse
Affiliation(s)
- Jianbo Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Yanhui Wang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Yuanling Sun
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Chaofan Ding
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Yanna Lin
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Weiyan Sun
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Chuannan Luo
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|
8
|
Biosensor for pesticide triazophos based on its inhibition of acetylcholinesterase and using a glassy carbon electrode modified with coral-like gold nanostructures supported on reduced graphene oxide. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1584-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
9
|
Esteban RM, Schütte K, Brandt P, Marquardt D, Meyer H, Beckert F, Mülhaupt R, Kölling H, Janiak C. Iridium@graphene composite nanomaterials synthesized in ionic liquid as re-usable catalysts for solvent-free hydrogenation of benzene and cyclohexene. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.nanoso.2015.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Duval F, van Beek TA, Zuilhof H. Key steps towards the oriented immobilization of antibodies using boronic acids. Analyst 2015; 140:6467-72. [DOI: 10.1039/c5an00589b] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The reader is guided through several points that need to be considered for a successful antibody immobilization using boronic acids.
Collapse
Affiliation(s)
- Florine Duval
- Laboratory of Organic Chemistry
- Wageningen University
- 6703 HB Wageningen
- The Netherlands
| | - Teris A. van Beek
- Laboratory of Organic Chemistry
- Wageningen University
- 6703 HB Wageningen
- The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry
- Wageningen University
- 6703 HB Wageningen
- The Netherlands
- Department of Chemical and Materials Engineering
| |
Collapse
|
11
|
Jiang G, Jiang T, Zhou H, Yao J, Kong X. Preparation of N-doped carbon quantum dots for highly sensitive detection of dopamine by an electrochemical method. RSC Adv 2015. [DOI: 10.1039/c4ra16773b] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The glass carbon electrode modified by N-doped carbon quantum dots (NCQD) (NCQD/GCE) has been used to detect dopamine (DA) with broad linear range and low detection limit.
Collapse
Affiliation(s)
- Guohua Jiang
- Department of Materials Engineering
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang)
| | - Tengteng Jiang
- Department of Materials Engineering
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
| | - Huijie Zhou
- Qixin Honours School
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
| | - Juming Yao
- Department of Materials Engineering
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang)
| | - Xiangdong Kong
- School of Life Science
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
| |
Collapse
|
12
|
Xu Z, Yin H, Han Y, Zhou Y, Ai S. DNA-based hybridization chain reaction amplification for assaying the effect of environmental phenolic hormone on DNA methyltransferase activity. Anal Chim Acta 2014; 829:9-14. [DOI: 10.1016/j.aca.2014.04.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 02/01/2023]
|
13
|
Jiang G, Jiang T, Wang Y, Du X, Wei Z, Zhou H. Facile preparation of novel Au–polydopamine nanoparticles modified by 4-mercaptophenylboronic acid for use in a glucose sensor. RSC Adv 2014. [DOI: 10.1039/c4ra05255b] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
MPBA–Au–PDA composite particles were prepared for the ultrasensitive non-enzymatic electrochemical immunoassay for glucose.
Collapse
Affiliation(s)
- Guohua Jiang
- Department of Materials Engineering
- Zhejiang Sci-Tech University
- Hangzhou 310018, P. R. China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang)
- Hangzhou 310018, P. R. China
| | - Tengteng Jiang
- Department of Materials Engineering
- Zhejiang Sci-Tech University
- Hangzhou 310018, P. R. China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang)
- Hangzhou 310018, P. R. China
| | - Yuan Wang
- Qixin Honours School
- Zhejiang Sci-Tech University
- Hangzhou 310018, P. R. China
| | - Xiangxiang Du
- Department of Materials Engineering
- Zhejiang Sci-Tech University
- Hangzhou 310018, P. R. China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang)
- Hangzhou 310018, P. R. China
| | - Zhen Wei
- Department of Materials Engineering
- Zhejiang Sci-Tech University
- Hangzhou 310018, P. R. China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang)
- Hangzhou 310018, P. R. China
| | - Huijie Zhou
- Qixin Honours School
- Zhejiang Sci-Tech University
- Hangzhou 310018, P. R. China
| |
Collapse
|
14
|
Amperometric immunosensor for carbofuran detection based on MWCNTs/GS-PEI-Au and AuNPs-antibody conjugate. SENSORS 2013; 13:5286-301. [PMID: 23604029 PMCID: PMC3673137 DOI: 10.3390/s130405286] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 12/05/2022]
Abstract
In this paper, an amperometric immunosensor for the detection of carbofuran was developed. Firstly, multiwall carbon nanotubes (MWCNTs) and graphene sheets-ethyleneimine polymer-Au (GS-PEI-Au) nanocomposites were modified onto the surface of a glass carbon electrode (GCE) via self-assembly. The nanocomposites can increase the surface area of the GCE to capture a large amount of antibody, as well as produce a synergistic effect in the electrochemical performance. Then the modified electrode was coated with gold nanoparticles-antibody conjugate (AuNPs-Ab) and blocked with BSA. The monoclonal antibody against carbofuran was covalently immobilized on the AuNPs with glutathione as a spacer arm. The morphologies of the GS-PEI-Au nanocomposites and the fabrication process of the immunosensor were characterized by X-ray diffraction (XRD), ultraviolet and visible absorption spectroscopy (UV-vis) and scanning electron microscopy (SEM), respectively. Under optimal conditions, the immunosensor showed a wide linear range, from 0.5 to 500 ng/mL, with a detection limit of 0.03 ng/mL (S/N = 3). The as-constructed immunosensor exhibited notable performance features such as high specificity, good reproducibility, acceptable stability and regeneration performance. The results are mainly due to the excellent properties of MWCNTs, GS-PEI-Au nanocomposites and the covalent immobilization of Ab with free hapten binding sites for further immunoreaction. It provides a new avenue for amperometric immunosensor fabrication.
Collapse
|