1
|
Quinn H, Wang W, Werner JG, Brown KA. Screening for electrically conductive defects in thin functional films using electrochemiluminescence. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37466448 DOI: 10.1039/d3ay00687e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Multifunctional thin films in energy-related devices often must be electrically insulating where a single nanoscale defect can result in complete device-scale failure. Locating and characterizing such defects presents a fundamental problem where high-resolution imaging methods are needed to find defects, but imaging with high spatial resolution limits the field of view and thus the measurement throughput. Here, we present a novel high-throughput method for detecting sub-micron defects in insulating thin films by leveraging the electrochemiluminescence (ECL) of luminol. Through a systematic study of reagent concentrations, buffers, voltage, and excitation time, we identify optimized conditions under which it is possible to detect sub-micron defects at high-throughput. Extrapolating from the signal to background observed for detecting 440 nm wide lines and 620 nm diameter circles, we estimate the minimum detectable features to be lines as narrow as 2.5 nm in width and pinholes as small as 70 nm in radius. We further explore this method by using it to characterize a nominally insulating poly(phenylene oxide) film and find conductive defects that are cross-correlated with high-resolution atomic force microscopy to provide feedback to synthesis. Given this assay's inherent parallelizability and scalability, it is expected to have a major impact on the automated discovery of multifunctional films.
Collapse
Affiliation(s)
- Harley Quinn
- Division of Materials Science & Engineering, Boston University, Boston, MA, 02215, USA.
| | - Wenlu Wang
- Division of Materials Science & Engineering, Boston University, Boston, MA, 02215, USA.
| | - Jörg G Werner
- Division of Materials Science & Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
| | - Keith A Brown
- Division of Materials Science & Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
- Department of Physics, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
2
|
Lai W, Liang Y, Mao X, Xue K, Zhang C. A cloth-based single-working-electrode electrochemiluminescence sensor for simultaneous detection of diabetes complication markers. Anal Chim Acta 2023; 1254:341121. [PMID: 37005028 DOI: 10.1016/j.aca.2023.341121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/13/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023]
Abstract
As one of the most common noninfectious diseases, diabetes and diabetic complications (DDC) have attracted great attention in the field of life and health. However, simultaneous detection of DDC markers usually requires labor- and time-consuming steps. Here, a novel cloth-based single-working-electrode electrochemiluminescence (SWE-ECL) sensor was designed for the simultaneous detection of multiple DDC markers. For this sensor, three independent ECL cells are distributed on the SWE, which is a simplification of the configuration of traditional sensors for simultaneous detection. In this way, the modification processes and ECL reactions occur at the back of the SWE, eliminating the adverse effects caused by human intervention on the electrode. Under optimized conditions, glucose, uric acid and lactate were determined, with corresponding linear dynamic ranges of 80-4000 μM, 45-1200 μM and 60-2000 μM, and detection limits of 54.79 μM, 23.95 μM and 25.82 μM, respectively. In addition, the cloth-based SWE-ECL sensor exhibited good specificity and satisfactory reproducibility, and its actual application potential was verified by measuring complex human serum samples. Overall, this work developed a simple, sensitive, low-cost and rapid method for the simultaneous quantitative determination of multiple markers related to DDC and demonstrated a new route for multiple-marker detection.
Collapse
|
3
|
Zhao Q, Zhu W, Cai W, Li J, Wu D, Kong Y. TiO 2 Nanotubes Decorated with CdSe Quantum Dots: A Bifunctional Electrochemiluminescent Platform for Chiral Discrimination and Chiral Sensing. Anal Chem 2022; 94:9399-9406. [PMID: 35715196 DOI: 10.1021/acs.analchem.2c01383] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chiral analysis is of significant importance for living organisms since chirality is the fundamental phenomenon in nature. In this work, a bifunctional electrochemiluminescent (ECL) platform is constructed for chiral discrimination and chiral sensing. 3-Mercaptopropionic acid-functionalized CdSe quantum dots (CdSe QDs) are combined with aminated TiO2 nanotubes (NH2-TiNTs) via amidation. The resultant CdSe QDs/TiNTs display significantly enhanced ECL signals due to the synergistic effect between CdSe QDs and TiNTs, which are then used for the chiral discrimination of the isomers of nine chiral amino acids (AAs) in the presence of d-AA oxidase (DAAO). DAAO can selectively catalyze the oxidation of d-AAs to generate H2O2, which acts as the coreaction reagent and triggers the ECL signals of CdSe QDs/TiNTs, and thus, the isomers of the nine chiral AAs can be effectively discriminated. In addition, the as-constructed ECL platform can also be used for the sensitive detection of d-AAs in the presence of DAAO with a wide linear range and a low limit of detection. These findings suggest that the CdSe QDs/TiNTs can work as a bifunctional ECL platform (chiral discrimination and chiral sensing), which might be an advanced ECL platform for biomedical applications.
Collapse
Affiliation(s)
- Qianqian Zhao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wenkai Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wenrong Cai
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Junyao Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Datong Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
4
|
Yang Y, Sun Y, Jin M, Bai R, Liu Y, Wu Y, Wang W, Feng X, Li S. Fabrication of Superoxide Dismutase (SOD) Imprinted Poly(ionic liquid)s via eATRP and its Application in Electrochemical Sensor. ELECTROANAL 2020. [DOI: 10.1002/elan.201900764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yifei Yang
- School of Chemistry and Chemical EngineeringLiaoning Normal University Dalian 116029 China
| | - Yue Sun
- School of Chemistry and Chemical EngineeringLiaoning Normal University Dalian 116029 China
| | - Mingzhu Jin
- School of Chemistry and Chemical EngineeringLiaoning Normal University Dalian 116029 China
| | - Ru Bai
- School of Chemistry and Chemical EngineeringLiaoning Normal University Dalian 116029 China
| | - Yutong Liu
- School of Chemistry and Chemical EngineeringLiaoning Normal University Dalian 116029 China
| | - Yingqi Wu
- School of Chemistry and Chemical EngineeringLiaoning Normal University Dalian 116029 China
| | - Wei Wang
- School of Chemistry and Chemical EngineeringLiaoning Normal University Dalian 116029 China
| | - Xuewei Feng
- School of Chemistry and Chemical EngineeringLiaoning Normal University Dalian 116029 China
| | - Siyu Li
- School of Chemistry and Chemical EngineeringLiaoning Normal University Dalian 116029 China
| |
Collapse
|
5
|
Simple, fast, and ultrasensitive method for textile dye determination based on luminol electrochemiluminescence (ECL) inhibition. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04571-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Nawaz R, Rasheed T, Bilal M, Majeed S, Iqbal Z, Iqbal T, Ali F. Luminol immobilized graphite electrode as sensitive electrochemiluminescent sensor for the detection of hydrogen peroxide. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
7
|
Lotfi Z, Mousavi HZ, Maryam Sajjadi S. A hyperbranched polyamidoamine dendrimer grafted onto magnetized graphene oxide as a sorbent for the extraction of synthetic dyes from foodstuff. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2484-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Mersal GAM, Mostafa NY, Omar AEH. Hydrothermal synthesis and processing of hydrogen titanate nanotubes for nicotine electrochemical sensing. MATERIALS RESEARCH EXPRESS 2017; 4:085031. [DOI: 10.1088/2053-1591/aa83de] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
9
|
Bagheri H, Manouchehri M, Allahdadlalouni M. A magnetic multifunctional dendrimeric coating on a steel fiber for solid phase microextraction of chlorophenols. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2220-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Chandra S, Mayer M, Baeumner AJ. PAMAM dendrimers: A multifunctional nanomaterial for ECL biosensors. Talanta 2017; 168:126-129. [PMID: 28391831 DOI: 10.1016/j.talanta.2017.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/02/2017] [Accepted: 03/04/2017] [Indexed: 10/20/2022]
Abstract
Polyamido amine (PAMAM) dendrimers have been shown to function as electrochemiluminescence (ECL) co-reactant and have the inherent capability of improving immobilization of molecules on surfaces due to their dendritic structure. Here, we investigated the combination of both of these properties as the basis for biosensor development. Dendrimers with 5, 8, 10 and 16 terminal amine groups, respectively, were used. These were covalently coupled to biotin as model recognition site, and tagged with Ru(bpy)32+ via adsorption. Due to their hydrophilicity, Ru-dendrimers showed significantly improved electrochemical activity in comparison to the standard tripropylamine (TPA) assisted ECL and similar luminescence yields even though 10 fold less dendrimer concentration was required in comparison to TPA. Best signals were obtained for D8 and D10 dendrimers. These Ru-dendrimers were subsequently used for the quantification of streptavidin, as its binding to the biotin-tag caused a proportional decrease in ECL signal with a dynamic range of 5nM to 1μM. These preliminary studies demonstrate that PAMAM dendrimers can function as responsive signal generators in solution-based ECL-bioassays with an assumed even higher impact when being immobilized directly on the electrode-surface.
Collapse
Affiliation(s)
- Sudeshna Chandra
- Department of Chemistry, Sunandan Divatia School of Science, NMIMS University, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, India.
| | - Michael Mayer
- Universität Regensburg, Institut für Analytische Chemie, Chemo- und Biosensorik, 93040 Regensburg, Germany
| | - Antje J Baeumner
- Universität Regensburg, Institut für Analytische Chemie, Chemo- und Biosensorik, 93040 Regensburg, Germany.
| |
Collapse
|
11
|
Novel Stir Bar Array Sorptive Extraction Coupled With Gas Chromatography–Mass Spectrometry for Simultaneous Determination of Three β2-Agonist Residues in Pork. Chromatographia 2017. [DOI: 10.1007/s10337-017-3242-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Chikhaliwala P, Chandra S. Dendrimers: New tool for enhancement of electrochemiluminescent signal. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Zhao Q, Tang S, Fang C, Tu YF. Titania nanotubes decorated with gold nanoparticles for electrochemiluminescent biosensing of glycosylated hemoglobin. Anal Chim Acta 2016; 936:83-90. [DOI: 10.1016/j.aca.2016.07.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/01/2016] [Accepted: 07/11/2016] [Indexed: 01/04/2023]
|
14
|
Electro-deposited poly-luminol molecularly imprinted polymer coating on carboxyl graphene for stir bar sorptive extraction of estrogens in milk. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1027:50-6. [DOI: 10.1016/j.jchromb.2016.05.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/11/2016] [Accepted: 05/14/2016] [Indexed: 11/23/2022]
|
15
|
The electrochemiluminescence of luminol on titania nanotubes functionalised indium tin oxide glass for flow injection analysis. Talanta 2015; 143:90-96. [DOI: 10.1016/j.talanta.2015.05.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/10/2015] [Accepted: 05/12/2015] [Indexed: 12/20/2022]
|
16
|
Multiple enhancement of luminol electrochemiluminescence using electrodes functionalized with titania nanotubes and platinum black: ultrasensitive determination of hydrogen peroxide, resveratrol, and dopamine. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1614-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Kirschbaum SEK, Baeumner AJ. A review of electrochemiluminescence (ECL) in and for microfluidic analytical devices. Anal Bioanal Chem 2015; 407:3911-26. [DOI: 10.1007/s00216-015-8557-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/12/2015] [Accepted: 02/10/2015] [Indexed: 12/31/2022]
|
18
|
Wang K, Wei X, Tu Y. Strong enhancement of the electrochemiluminescence of luminol by AuAg and PtAg alloy nanoclusters, and its sensitization by phenolic artificial oestrogens. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1224-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Díaz-Ortega IF, Ballesta-Claver J, Martín MC, Benítez-Aranda S, Capitán-Vallvey LF. An ionogel composite including copolymer nanowires for disposable electrochemiluminescent sensor configurations. RSC Adv 2014. [DOI: 10.1039/c4ra08311c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aniline derivatives such as luminol and benzidines can be electropolymerized for the preparation of electrochemiluminescent sensors.
Collapse
Affiliation(s)
- I. F. Díaz-Ortega
- ECsens
- Department of Analytical Chemistry
- Campus Fuentenueva
- Faculty of Sciences
- University of Granada
| | - J. Ballesta-Claver
- ECsens
- Department of Analytical Chemistry
- Campus Fuentenueva
- Faculty of Sciences
- University of Granada
| | - M. Cruz Martín
- ECsens
- Department of Analytical Chemistry
- Campus Fuentenueva
- Faculty of Sciences
- University of Granada
| | - S. Benítez-Aranda
- ECsens
- Department of Analytical Chemistry
- Campus Fuentenueva
- Faculty of Sciences
- University of Granada
| | - L. F. Capitán-Vallvey
- ECsens
- Department of Analytical Chemistry
- Campus Fuentenueva
- Faculty of Sciences
- University of Granada
| |
Collapse
|