1
|
Abdul Aziz SFN, Hui OS, Salleh AB, Normi YM, Yusof NA, Ashari SE, Alang Ahmad SA. Enhancing uric acid electrochemical detection with copper ion-activated mini protein mimicking uricase within ZIF-8: response surface methodology (RSM) optimization. Anal Bioanal Chem 2024; 416:227-241. [PMID: 37938411 DOI: 10.1007/s00216-023-05011-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
This study aims to investigate the influence of copper(II) ions as a cofactor on the electrochemical performance of a biocomposite consisting of a mini protein mimicking uricase (mp20) and zeolitic immidazolate framework-8 (ZIF-8) for the detection of uric acid. A central composite design (CCD) was utilized to optimize the independent investigation, including pH, deposition potential, and deposition time, while the current response resulting from the electrocatalytic oxidation of uric acid was used as the response. The statistical analysis of variance (ANOVA) showed a good correlation between the experimental and predicted data, with a residual standard error percentage (RSE%) of less than 2% for predicting optimal conditions. The synergistic effect of the nanoporous ZIF-8 host, Cu(II)-activated mp20, and reduced graphene oxide (rGO) layer resulted in a highly sensitive biosensor with a limit of detection (LOD) of 0.21 μM and a reproducibility of the response (RSD = 0.63%). The Cu(II)-activated mp20@ZIF-8/rGO/SPCE was highly selective in the presence of common interferents, and the fabricated layer exhibited remarkable stability with signal changes below 4.15% after 60 days. The biosensor's reliable performance was confirmed through real sample analyses of human serum and urine, with comparable recovery values to conventional HPLC.
Collapse
Affiliation(s)
- Siti Fatimah Nur Abdul Aziz
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- School of Chemical Sciences, Universiti Sains Malaysia (USM), 11800, Gelugor, Pulau Pinang, Malaysia.
| | - Ong Sin Hui
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology Research Centre (EMTech), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Technology Research Centre (EMTech), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nor Azah Yusof
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Siti Efliza Ashari
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Shahrul Ainliah Alang Ahmad
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
Masrat S, Nagal V, Khan M, Moid I, Alam S, Bhat KS, Khosla A, Ahmad R. Electrochemical Ultrasensitive Sensing of Uric Acid on Non-Enzymatic Porous Cobalt Oxide Nanosheets-Based Sensor. BIOSENSORS 2022; 12:1140. [PMID: 36551107 PMCID: PMC9775216 DOI: 10.3390/bios12121140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Transition metal oxide (TMO)-based nanomaterials are effectively utilized to fabricate clinically useful ultra-sensitive sensors. Different nanostructured nanomaterials of TMO have attracted a lot of interest from researchers for diverse applications. Herein, we utilized a hydrothermal method to develop porous nanosheets of cobalt oxide. This synthesis method is simple and low temperature-based. The morphology of the porous nanosheets like cobalt oxide was investigated in detail using FESEM and TEM. The morphological investigation confirmed the successful formation of the porous nanosheet-like nanostructure. The crystal characteristic of porous cobalt oxide nanosheets was evaluated by XRD analysis, which confirmed the crystallinity of as-synthesized cobalt oxide nanosheets. The uric acid sensor fabrication involves the fixing of porous cobalt oxide nanosheets onto the GCE (glassy carbon electrode). The non-enzymatic electrochemical sensing was measured using CV and DPV analysis. The application of DPV technique during electrochemical testing for uric acid resulted in ultra-high sensitivity (3566.5 µAmM-1cm-2), which is ~7.58 times better than CV-based sensitivity (470.4 µAmM-1cm-2). Additionally, uric acid sensors were tested for their selectivity and storage ability. The applicability of the uric acid sensors was tested in the serum sample through standard addition and recovery of known uric acid concentration. This ultrasensitive nature of porous cobalt oxide nanosheets could be utilized to realize the sensing of other biomolecules.
Collapse
Affiliation(s)
- Sakeena Masrat
- Sensors Lab, Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Vandana Nagal
- Quantum and Nanophotonics Research Laboratory, Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Marya Khan
- Sensors Lab, Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Iqra Moid
- Department of Life Science, Shakuntala Memorial Educational Institute, Bahraich 271870, India
| | - Shamshad Alam
- Department of Pharmacology & Therapeutics, Rosewell Park Cancer Institute, Elm Street & Carlton Street, Buffalo, NY 14263, USA
| | - Kiesar Sideeq Bhat
- Department of Bioresources, University of Kashmir, Hazratbal, Srinagar 190006, India
- Singapore-MIT Alliance for Research and Technology (SMART), Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Create Way 138602, Singapore
| | - Ajit Khosla
- Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710126, China
| | - Rafiq Ahmad
- Sensors Lab, Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
3
|
Negrea S, Andelescu AA, Ilies (b. Motoc) S, Cretu C, Cseh L, Rastei M, Donnio B, Szerb EI, Manea F. Design of Nanostructured Hybrid Electrodes Based on a Liquid Crystalline Zn(II) Coordination Complex-Carbon Nanotubes Composition for the Specific Electrochemical Sensing of Uric Acid. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4215. [PMID: 36500838 PMCID: PMC9739524 DOI: 10.3390/nano12234215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
A metallomesogen based on an Zn(II) coordination complex was employed as precursor to obtain a complex matrix nanoplatform for the fabrication of a high-performance electrochemical hybrid sensor. Three representative paste electrodes, which differ by the weight ratio between Zn(II) metallomesogen and carbon nanotubes (CNT), i.e., PE_01, PE_02 and PE_03, were obtained by mixing the materials in different amounts. The composition with the largest amount of CNT with respect to Zn complex, i.e., PE_03, gives the best electrochemical signal for uric acid detection by cyclic voltammetry in an alkaline medium. The amphiphilic structure of the Zn(II) coordination complex likely induces a regular separation between the metal centers favoring the redox system through their reduction, followed by stripping, and is characterized by enhanced electrocatalytic activity towards uric acid oxidation. The comparative detection of uric acid between the PE_03 paste electrode and the commercial zinc electrode demonstrated the superiority of the former, and its great potential for the development of advanced electrochemical detection of uric acid. Advanced electrochemical techniques, such as differential-pulsed voltammetry (DPV) and square-wave voltammetry (SWV), allowed for the highly sensitive detection of uric acid in aqueous alkaline solutions. In addition, a good and fast amperometric signal for uric acid detection was achieved by multiple-pulsed amperometry, which was validated by urine analysis.
Collapse
Affiliation(s)
- Sorina Negrea
- Department of Applied Chemistry and Engineering of Inorganic Compounds and Environment, Politehnica University of Timisoara, Bvd. Vasile Parvan No. 6, 300223 Timisoara, Romania
- National Institute of Research and Development for Industrial Ecology (INCD ECOIND), Timisoara Branch, 300431 Timisoara, Romania
| | - Adelina A. Andelescu
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania
| | - Sorina Ilies (b. Motoc)
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania
| | - Carmen Cretu
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania
| | - Liliana Cseh
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania
| | - Mircea Rastei
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg (UMR7504), 67034 Strasbourg, France
| | - Bertrand Donnio
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg (UMR7504), 67034 Strasbourg, France
| | - Elisabeta I. Szerb
- “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania
| | - Florica Manea
- Department of Applied Chemistry and Engineering of Inorganic Compounds and Environment, Politehnica University of Timisoara, Bvd. Vasile Parvan No. 6, 300223 Timisoara, Romania
| |
Collapse
|
4
|
Öndeş B, Evli S, Şahin Y, Uygun M, Uygun DA. Uricase based amperometric biosensor improved by AuNPs-TiS2 nanocomposites for uric acid determination. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Jain S, Paliwal A, Gupta V, Tomar M. Smartphone integrated handheld Long Range Surface Plasmon Resonance based fiber-optic biosensor with tunable SiO 2 sensing matrix. Biosens Bioelectron 2021; 201:113919. [PMID: 35032842 DOI: 10.1016/j.bios.2021.113919] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/14/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022]
Abstract
In the present work, a novel smartphone assisted fiber optic (FO)-Long range surface plasmon resonance (LRSPR) based biosensor is proposed. In the developed biosensor, the inbuilt color sensitive property of the digital camera present in the smartphone is used for the monitoring of blue and red color channel intensities. This will replace the most exploited diffraction gratings or narrow band filters used for analyzing the spectral data in reported smartphone based SPR sensors. The proposed technique helps in improving the sensitivity and reduces the chances of wrong detection. For the first time, SiO2 nanostructured film is employed as the dielectric sensing layer to excite the Long range surface plasmons (LRSPs) in the dielectric-metal-dielectric configuration. The proposed FO-LRSPR biosensor possess limit of detection of 0.02 mM and sensitivity of 0.9/mM and, for uric acid detection in the 0.1 mM-1 mM concentration range. The novel fabricated sensor which is found to be stable up to 24 weeks can be effectively utilized in health sector and environment monitoring and it possess the ability of point-of-care detection, even in rural and remote areas.
Collapse
Affiliation(s)
- Surbhi Jain
- Department of Physics and Astrophysics, University of Delhi, Delhi, 110007, India
| | - Ayushi Paliwal
- Department of Physics, Deshbandhu College, University of Delhi, Delhi, 110007, India
| | - Vinay Gupta
- Department of Physics and Astrophysics, University of Delhi, Delhi, 110007, India
| | - Monika Tomar
- Department of Physics, Miranda House, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
6
|
MOF-derived porous nanostructured Ni2P/C material with highly sensitive electrochemical sensor for uric acid. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Nagal V, Kumar V, Khan M, AlOmar SY, Tripathy N, Singh K, Khosla A, Ahmad N, Hafiz AK, Ahmad R. A highly sensitive uric acid biosensor based on vertically arranged ZnO nanorods on a ZnO nanoparticle-seeded electrode. NEW J CHEM 2021. [DOI: 10.1039/d1nj03744g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vertically-arranged ZnO nanorods grown on a ZnO nanoparticle-seeded FTO electrode using a hydrothermal method for highly sensitive uric acid biosensor fabrication.
Collapse
Affiliation(s)
- Vandana Nagal
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi-110025, India
| | - Virendra Kumar
- Nanotechnology Lab, School of Physical Sciences, Jawaharlal Nehru University (JNU), New Delhi-110067, India
| | - Marya Khan
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi-110025, India
| | - Suliman Yousef AlOmar
- Zoology Department, College of Science, King Saud University, Riyadh-11451, Kingdom of Saudi Arabia
| | - Nirmalya Tripathy
- Departments of Pharmacy, Oregon State University, Corvallis, OR-97331, USA
| | - Kedar Singh
- Nanotechnology Lab, School of Physical Sciences, Jawaharlal Nehru University (JNU), New Delhi-110067, India
| | - Ajit Khosla
- Department of Mechanical Systems Engineering, Faculty of Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh-11451, Kingdom of Saudi Arabia
| | | | - Rafiq Ahmad
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi-110025, India
| |
Collapse
|
8
|
Jain S, Paliwal A, Gupta V, Tomar M. Refractive index tuning of SiO 2 for Long Range Surface Plasmon Resonance based biosensor. Biosens Bioelectron 2020; 168:112508. [PMID: 32916615 DOI: 10.1016/j.bios.2020.112508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/23/2020] [Accepted: 08/09/2020] [Indexed: 12/26/2022]
Abstract
A novel, highly sensitive and low cost Long Range Surface Plasmon Resonance (LRSPR) biosensor for detecting uric acid, as a model analyte, has been developed in this work. Silicon dioxide (SiO2) having low and tunable refractive index has been chosen as the dielectric layer for the excitation of LRSP modes replacing the most explored Cytop and Teflon polymers. The prepared LRSPR based uric acid bio-sensor gives good response characteristics with a high sensitivity of about 21.6°/mM and low limit of detection (LOD) of 0.02 mM. The fabricated LRSPR sensor was also evaluated to detect uric acid in real serum samples. The results yield a great scope to promote the development of robust, efficient and highly selective LRSPR based biosensors with SiO2 as tunable dielectric layer.
Collapse
Affiliation(s)
- Surbhi Jain
- Department of Physics and Astrophysics, University of Delhi, Delhi, 110007, India
| | - Ayushi Paliwal
- Department of Physics and Astrophysics, University of Delhi, Delhi, 110007, India
| | - Vinay Gupta
- Department of Physics and Astrophysics, University of Delhi, Delhi, 110007, India
| | - Monika Tomar
- Department of Physics, Miranda House, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
9
|
Yan Q, Zhi N, Yang L, Xu G, Feng Q, Zhang Q, Sun S. A highly sensitive uric acid electrochemical biosensor based on a nano-cube cuprous oxide/ferrocene/uricase modified glassy carbon electrode. Sci Rep 2020; 10:10607. [PMID: 32606291 PMCID: PMC7327035 DOI: 10.1038/s41598-020-67394-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/08/2020] [Indexed: 11/17/2022] Open
Abstract
A uric acid (UA) electrochemical biosensor was constructed using ferrocene (Fc) decorated cuprous oxide (Cu2O) enhanced electro-active characteristics and covalently immobilized with uricase (UOx) on glassy carbon electrode (GCE). The electrochemical characteristics of the fabricated electrode was analysed by cyclic voltammetry, electrochemical impedance spectroscopy and differential pulse voltammetry (DPV). DPV studies revealed rapid response of fabricated electrode UOx/Fc/Cu2O/GCE towards UA in a wide concentration range of 0.1–1,000 μM with a sensitivity of 1.900 μA mM−1 cm−2 and very low detection limit of 0.0596 μM. A very low magnitude Michaelis–Menten constant (Km) value was evaluated as 34.7351 μM which indicated the chemical attraction of the enzyme towards the UA was much higher. The developed biosensor was successfully applied to detect UA in human urine samples. Moreover, reproducibility and stability studies demonstrated the fabricated UOx/Fc/Cu2O/GCE biosensor had high reproducibility with a RSD of 2.8% and good reusability with a RSD of 3.2%. Specificity studies results showed the fabricated biosensor had strong anti-interference ability. The improved sensor performance was attributed to the synergistic electronic properties of Cu2O and Fc that provided enhances delectrocatalytic activity and electron transfer. The present biosensor can be extended for use in clinical settings.
Collapse
Affiliation(s)
- Qinghua Yan
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Na Zhi
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Li Yang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Guangri Xu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Qigao Feng
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Qiqing Zhang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Shujuan Sun
- The Hospital of Eighty-Third Group Army, Xinxiang, 453000, China
| |
Collapse
|
10
|
Kiyani MM, Butt MA, Rehman H, Ali H, Hussain SA, Obaid S, Arif Hussain M, Mahmood T, Bokhari SAI. Antioxidant and anti-gout effects of orally administered zinc oxide nanoparticles in gouty mice. J Trace Elem Med Biol 2019; 56:169-177. [PMID: 31479800 DOI: 10.1016/j.jtemb.2019.08.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/16/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Zinc is an essential trace element which is involved in controlling oxidative stress, growth and immune system by regulating inflammatory cytokines. Gouty arthritis is the inflammation of joints and tissues caused by the accumulation of monosodium urate crystals. METHOD AND OBJECTIVE This study involved the oral administration of zinc oxide nanoparticles at a various concentration (5 ppm, 10 ppm, and 20 ppm) and study their antioxidant and anti-gout effects on Balb/C mice. Various parameters such as ROS, superoxide, peroxide, catalase, TBARS, RFTs, LFTs, lipid profile and blood count were studied. RESULTS ZnO nanoparticles at the concentrations of 10 and 20 ppm were significant (P < 0.001) in reducing serum uric acid concentration thus treating gouty arthritis. Reactive oxygen species and thiobarbituric acid reactive substances were significantly increased in comparison to zinc oxide nanoparticles treated groups. Furthermore, blood count and LFTs also showed the effectiveness of zinc oxide in the reduction of hyperuricemia. Histopathological analysis showed no apparent changes in liver, kidney and muscles tissues. CONCLUSION Zinc oxide nanoparticles can be effective in reducing oxidative stress and the treatment of gouty arthritis.
Collapse
Affiliation(s)
- Mubin Mustafa Kiyani
- Department of Bioinformatics and Biotechnology, Faculty of Basic and Applied sciences, International Islamic university Islamabad, Pakistan; Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Islamabad, Pakistan
| | - Maisra Azhar Butt
- Department of animal sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hamza Rehman
- Department of Bioinformatics and Biotechnology, Faculty of Basic and Applied sciences, International Islamic university Islamabad, Pakistan.
| | - Hussain Ali
- Veterinary Farms Management, National Institute of Health, Islamabad, Pakistan
| | - Syed Ali Hussain
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Islamabad, Pakistan
| | - Sumaiyah Obaid
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Islamabad, Pakistan
| | - Mir Arif Hussain
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Islamabad, Pakistan
| | - Tariq Mahmood
- Department of Nanoscience and Technology, National Center for Physics, Islamabad, Pakistan
| | - Syed Ali Imran Bokhari
- Department of Bioinformatics and Biotechnology, Faculty of Basic and Applied sciences, International Islamic university Islamabad, Pakistan
| |
Collapse
|
11
|
Xu Z, Zhang MQ, Zou HQ, Liu JS, Wang DZ, Wang J, Wang LD. Non-enzymatic electrochemical detection of uric acid with electrodeposited Nafion film. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Uricase grafted nanoconducting matrix based electrochemical biosensor for ultrafast uric acid detection in human serum samples. Int J Biol Macromol 2019; 130:333-341. [PMID: 30797811 DOI: 10.1016/j.ijbiomac.2019.02.121] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/08/2019] [Accepted: 02/20/2019] [Indexed: 01/22/2023]
Abstract
Gold nanoparticles decorated graphene oxide (Au-rGO) nanocomposite thin films with enhanced electro-active characteristics were prepared and covalently immobilized with uricase (UOx) enzyme for sensitive and selective detection of uric acid (UA). Differential pulse voltammetry (DPV) studies revealed rapid response of fabricated electrode towards UA at low potential (0.228 V) in a wide concentration range of 50-800 μM with a sensitivity of 86.62 ± 0.19 μA mM-1 and very low detection limit of 7.32 ± 0.21 μM. The obtained Michaelis-Menten constant (km) value of 51.75 μM signifies high enzyme kinetics at electrode surface with UA. The developed biosensor was successfully applied to detect UA in human serum samples. Interferences due to components present in the real matrix were evaluated and UA determination in mixed sample was also performed. The fabricated UOx/Au-rGO/ITO biosensor demonstrated high reproducibility and a shelf-life of 6 months indicating the promising future of Au-rGO nanocomposite as an efficient transducer matrix for biosensing applications. The fast response time (1.0 ± 0.6 s) and improved sensor performance is attributed to the synergistic electronic properties of Au-nanoparticles and rGO that provided enhanced electron transfer and high electro-active species surface coverage at Au-rGO nanocomposite.
Collapse
|
13
|
Ali M, Khalid MAU, Shah I, Kim SW, Kim YS, Lim JH, Choi KH. Paper-based selective and quantitative detection of uric acid using citrate-capped Pt nanoparticles (PtNPs) as a colorimetric sensing probe through a simple and remote-based device. NEW J CHEM 2019. [DOI: 10.1039/c9nj01257e] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A colorimetric portable setup was developed for remote UA measurements using a smartphone-based application to demonstrate its use in point-of-care testing.
Collapse
Affiliation(s)
- Muhsin Ali
- Department of Mechatronics Engineering
- Jeju National University
- Jeju
- Korea
| | | | - Imran Shah
- Department of Mechatronics Engineering
- Jeju National University
- Jeju
- Korea
| | - Soo Wan Kim
- Department of Mechatronics Engineering
- Jeju National University
- Jeju
- Korea
| | - Young Su Kim
- Department of Mechatronics Engineering
- Jeju National University
- Jeju
- Korea
| | - Jong Hwan Lim
- Department of Mechatronics Engineering
- Jeju National University
- Jeju
- Korea
| | - Kyung Hyung Choi
- Department of Mechatronics Engineering
- Jeju National University
- Jeju
- Korea
| |
Collapse
|
14
|
Pradhan S, Pramanik S, Das DK, Bhar R, Bandyopadhyay R, Millner P, Pramanik P. Nanosized iron telluride for simultaneous nanomolar voltammetric determination of dopamine, uric acid, guanine and adenine. NEW J CHEM 2019. [DOI: 10.1039/c9nj02329a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herein, an efficient electrochemical sensor based on nano-sized iron telluride material (FeTe2) have been developed for the first time for simultaneous nanomolar determination of dopamine, uric acid, guanine and adenine molecules.
Collapse
Affiliation(s)
- Susmita Pradhan
- Department of Instrumentation Science
- Jadavpur University
- Kolkata-700032
- India
| | - Susmita Pramanik
- Department of Chemistry and Nanoscience
- GLA University
- Mathura-281406
- India
| | - Dipak K. Das
- Department of Chemistry and Nanoscience
- GLA University
- Mathura-281406
- India
| | - Radhaballabh Bhar
- Department of Instrumentation Science
- Jadavpur University
- Kolkata-700032
- India
| | - Rajib Bandyopadhyay
- Department of Instrumentation and Electronics Engineering
- Jadavpur University
- Kolkata-700098
- India
- Laboratory of Artificial Sensory Systems
| | - Paul Millner
- Faculty of Biological Sciences
- University of Leeds
- UK
| | - Panchanan Pramanik
- Department of Chemistry and Nanoscience
- GLA University
- Mathura-281406
- India
- Nanotechnology & Catalysis Research Centre Level 3, Block A, Institute for Advanced Studies
| |
Collapse
|
15
|
Electrically nanowired-enzymes for probe modification and sensor fabrication. Biosens Bioelectron 2018; 121:223-235. [DOI: 10.1016/j.bios.2018.09.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 11/23/2022]
|
16
|
EGFET-Based Sensors for Bioanalytical Applications: A Review. SENSORS 2018; 18:s18114042. [PMID: 30463318 PMCID: PMC6263563 DOI: 10.3390/s18114042] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/04/2018] [Accepted: 11/12/2018] [Indexed: 11/29/2022]
Abstract
Since the 1970s, a great deal of attention has been paid to the development of semiconductor-based biosensors because of the numerous advantages they offer, including high sensitivity, faster response time, miniaturization, and low-cost manufacturing for quick biospecific analysis with reusable features. Commercial biosensors have become highly desirable in the fields of medicine, food, and environmental monitoring as well as military applications, whereas increasing concerns about food safety and health issues have resulted in the introduction of novel legislative standards for these sensors. Numerous devices have been developed for monitoring biological processes such as nucleic acid hybridization, protein–protein interaction, antigen–antibody bonds, and substrate–enzyme reactions, just to name a few. Since the 1980s, scientific interest moved to the development of semiconductor-based devices, which also include integrated front-end electronics, such as the extended-gate field-effect transistor (EGFET) biosensor, one of the first miniaturized chemical sensors. This work is intended to be a review of the state of the art focused on the development of biosensors and chemosensors based on extended-gate field-effect transistor within the field of bioanalytical applications, which will highlight the most recent research reported in the literature. Moreover, a comparison among the diverse EGFET devices will be presented, giving particular attention to the materials and technologies.
Collapse
|
17
|
Sol-Gel Mediated Greener Synthesis of γ-Fe2O3 Nanostructures for the Selective and Sensitive Determination of Uric Acid and Dopamine. Catalysts 2018. [DOI: 10.3390/catal8110512] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Novel eco-freindly benign morphology-controlled biosynthesis of acicular iron oxide (γ-Fe2O3) nanostructures with various shapes and sizes have been synthesized through greener surfactant, Aloe vera (AV) extract assisted sol-gel method. By simply varying the experimental parameters, pure phase of cubic spinel superparamagnetic γ-Fe2O3 nanospherical aggregates, nanobelts and nanodots have been developed. The synthesized γ-Fe2O3 nanostructures are characterized through X-Ray Diffractommetry (XRD), X-Ray Photoelectron Spectroscopy (XPS), Fourier Transform-Infrared Spectrsocopy (FT-IR), Field Emission-Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM) and Vibrating Sample Magnetometer (VSM). Moreover, the electrochemical determination of uric acid (UA) and dopamine (DA) of the as obtained γ-Fe2O3 nanostructures are systematically demonstrated. The electrochemical properties of the γ-Fe2O3 nanostructures modified glassy carbon electrode (GCE) displayed an excellent sensing capability for the determination of DA and UA, simultaneously than the bare GCE. When compared with the other iron oxide nanostructures, γ-Fe2O3 nanobelts/GCE exhibited remarkable oxidation current response towards the biomolecules. This occurred due to the high surface area and the unique one-dimensional nanostructure of γ-Fe2O3 nanobelts. Ultimately, the greener synthesis protocol explored in this research work may also be expanded for the preparation of other morphology controlled magnetic and non-magnetic nanomaterials, which could easily open up innovative potential avenues for the development of practical biosensors.
Collapse
|
18
|
Sol-gel synthesis of cubic titanium dioxide nanoparticle using poly(ethylene glycol) as a capping agent: voltammetric simultaneous determination of uric acid and guanine. Mikrochim Acta 2018; 185:513. [DOI: 10.1007/s00604-018-3042-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/04/2018] [Indexed: 01/13/2023]
|
19
|
Kannan P, Su SS, Mannan MS, Castaneda H, Vaddiraju S. A Review of Characterization and Quantification Tools for Microbiologically Influenced Corrosion in the Oil and Gas Industry: Current and Future Trends. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02211] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Pranav Kannan
- Mary Kay O’Connor Process Safety Center, Texas A&M University System, 3122 TAMU, College Station, Texas 77843-3122, United States
- Artie McFerrin Department of Chemical Engineering, Texas A&M University System, 3122 TAMU, College Station, Texas 77843-3122, United States
| | - Shei Sia Su
- National Corrosion and Materials Reliability Laboratory, Texas A&M University, College Station, Texas 77843-3003, United States
- Materials Science and Engineering Department, Texas A&M University, College Station, Texas 77843-3003, United States
| | - M. Sam Mannan
- Mary Kay O’Connor Process Safety Center, Texas A&M University System, 3122 TAMU, College Station, Texas 77843-3122, United States
- Artie McFerrin Department of Chemical Engineering, Texas A&M University System, 3122 TAMU, College Station, Texas 77843-3122, United States
| | - Homero Castaneda
- National Corrosion and Materials Reliability Laboratory, Texas A&M University, College Station, Texas 77843-3003, United States
- Materials Science and Engineering Department, Texas A&M University, College Station, Texas 77843-3003, United States
| | - Sreeram Vaddiraju
- Mary Kay O’Connor Process Safety Center, Texas A&M University System, 3122 TAMU, College Station, Texas 77843-3122, United States
- Artie McFerrin Department of Chemical Engineering, Texas A&M University System, 3122 TAMU, College Station, Texas 77843-3122, United States
| |
Collapse
|
20
|
One-pot synthesis of popcorn-like Au@Polyluminol nanoflowers for sensitive solid-state electrochemiluminescent sensor. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.194] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Colorimetric and fluorometric determination of uric acid based on the use of nitrogen-doped carbon quantum dots and silver triangular nanoprisms. Mikrochim Acta 2018; 185:281. [DOI: 10.1007/s00604-018-2814-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/15/2018] [Indexed: 02/07/2023]
|
22
|
Farzin L, Shamsipur M, Samandari L, Sheibani S. Advances in the design of nanomaterial-based electrochemical affinity and enzymatic biosensors for metabolic biomarkers: A review. Mikrochim Acta 2018; 185:276. [PMID: 29721621 DOI: 10.1007/s00604-018-2820-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/24/2018] [Indexed: 10/17/2022]
Abstract
This review (with 340 refs) focuses on methods for specific and sensitive detection of metabolites for diagnostic purposes, with particular emphasis on electrochemical nanomaterial-based sensors. It also covers novel candidate metabolites as potential biomarkers for diseases such as neurodegenerative diseases, autism spectrum disorder and hepatitis. Following an introduction into the field of metabolic biomarkers, a first major section classifies electrochemical biosensors according to the bioreceptor type (enzymatic, immuno, apta and peptide based sensors). A next section covers applications of nanomaterials in electrochemical biosensing (with subsections on the classification of nanomaterials, electrochemical approaches for signal generation and amplification using nanomaterials, and on nanomaterials as tags). A next large sections treats candidate metabolic biomarkers for diagnosis of diseases (in the context with metabolomics), with subsections on biomarkers for neurodegenerative diseases, autism spectrum disorder and hepatitis. The Conclusion addresses current challenges and future perspectives. Graphical abstract This review focuses on the recent developments in electrochemical biosensors based on the use of nanomaterials for the detection of metabolic biomarkers. It covers the critical metabolites for some diseases such as neurodegenerative diseases, autism spectrum disorder and hepatitis.
Collapse
Affiliation(s)
- Leila Farzin
- Radiation Application Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-3486, Tehran, Iran.
| | - Mojtaba Shamsipur
- Department of Chemistry, Razi University, P.O. Box 67149-67346, Kermanshah, Iran
| | - Leila Samandari
- Department of Chemistry, Razi University, P.O. Box 67149-67346, Kermanshah, Iran
| | - Shahab Sheibani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-3486, Tehran, Iran
| |
Collapse
|
23
|
Enhanced fluorescence detection of proteins using ZnO nanowires integrated inside microfluidic chips. Biosens Bioelectron 2018; 99:368-374. [DOI: 10.1016/j.bios.2017.08.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/22/2017] [Accepted: 08/02/2017] [Indexed: 11/22/2022]
|
24
|
Study of ZnS Nanostructures Based Electrochemical and Photoelectrochemical Biosensors for Uric Acid Detection. SENSORS 2017; 17:s17061235. [PMID: 28555028 PMCID: PMC5492193 DOI: 10.3390/s17061235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/14/2017] [Accepted: 05/18/2017] [Indexed: 01/13/2023]
Abstract
Uric acid (UA) is a kind of purine metabolism product and important in clinical diagnosis. In this work, we present a study of ZnS nanostructures-based electrochemical and photoelectrochemical biosensors for UA detection. Through a simple hydrothermal method and varying the ratio of reaction solvents, we obtained ZnS nanomaterials of one-dimensional to three-dimensional morphologies and they were characterized using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). To fabricate the UA biosensor and study the effect of material morphology on its performance, ZnS nanomaterials were deposited on indium tin oxide (ITO) conducting glass and then coated with uricase by physical absorption. Three kinds of working electrodes were characterized by cyclic voltammetry method. The effect of material morphology on performance of UA detection was investigated via amperometric response based electrochemical method based on enzymatic reaction. The ZnS urchin-like nanostructures electrode shows better sensitivity compared with those made of nanoparticles and nanoflakes because of its high surface-area-to-volume ratio. The photoelectrochemical method for detection of UA was also studied. The sensitivity was increased 5 times after irradiation of 300 nm UV light. These results indicate that ZnS nanostructures are good candidate materials for developing enzyme-based UA biosensors.
Collapse
|
25
|
Ahmad R, Tripathy N, Ahn MS, Hahn YB. Solution Process Synthesis of High Aspect Ratio ZnO Nanorods on Electrode Surface for Sensitive Electrochemical Detection of Uric Acid. Sci Rep 2017; 7:46475. [PMID: 28418039 PMCID: PMC5394472 DOI: 10.1038/srep46475] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/17/2017] [Indexed: 11/09/2022] Open
Abstract
This study demonstrates a highly stable, selective and sensitive uric acid (UA) biosensor based on high aspect ratio zinc oxide nanorods (ZNRs) vertical grown on electrode surface via a simple one-step low temperature solution route. Uricase enzyme was immobilized on the ZNRs followed by Nafion covering to fabricate UA sensing electrodes (Nafion/Uricase-ZNRs/Ag). The fabricated electrodes showed enhanced performance with attractive analytical response, such as a high sensitivity of 239.67 μA cm−2 mM−1 in wide-linear range (0.01–4.56 mM), rapid response time (~3 s), low detection limit (5 nM), and low value of apparent Michaelis-Menten constant (Kmapp, 0.025 mM). In addition, selectivity, reproducibility and long-term storage stability of biosensor was also demonstrated. These results can be attributed to the high aspect ratio of vertically grown ZNRs which provides high surface area leading to enhanced enzyme immobilization, high electrocatalytic activity, and direct electron transfer during electrochemical detection of UA. We expect that this biosensor platform will be advantageous to fabricate ultrasensitive, robust, low-cost sensing device for numerous analyte detection.
Collapse
Affiliation(s)
- Rafiq Ahmad
- School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Nirmalya Tripathy
- Department of BIN Fusion Technology, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Min-Sang Ahn
- School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Yoon-Bong Hahn
- School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
26
|
Charan C, Shahi VK. Cobalt ferrite (CoFe2O4) nanoparticles (size: ∼10 nm) with high surface area for selective non-enzymatic detection of uric acid with excellent sensitivity and stability. RSC Adv 2016. [DOI: 10.1039/c6ra08746a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A high surface area CoFe2O4 nanoparticle based non-enzymatic uric acid biosensor with excellent sensitivity, selectivity and LOD.
Collapse
Affiliation(s)
- Chumki Charan
- Electro-Membrane Processes Division
- CSIR-Central Salt and Marine Chemicals Research Institute
- Council of Scientific & Industrial Research
- Bhavnagar 364 002
- India
| | - Vinod K. Shahi
- Electro-Membrane Processes Division
- CSIR-Central Salt and Marine Chemicals Research Institute
- Council of Scientific & Industrial Research
- Bhavnagar 364 002
- India
| |
Collapse
|
27
|
Mecheri B, De Porcellinis D, Campana PT, Rainer A, Trombetta M, Marletta A, Oliveira ON, Licoccia S. Tuning Structural Changes in Glucose Oxidase for Enzyme Fuel Cell Applications. ACS APPLIED MATERIALS & INTERFACES 2015; 7:28311-28318. [PMID: 26641699 DOI: 10.1021/acsami.5b08610] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Stabilization and electrical contacting of redox enzymes with electrodes are fundamental requirements for bioelectronics devices, including biosensors and enzyme fuel cells (EFCs). In this study, we show increased glucose oxidase (GOx) stability by immobilization with Nafion. The immobilization process affected GOx conformation but was not detrimental to its activity, which was maintained for more than 120 days. The GOx/Nafion system was interfaced to a carbon cloth electrode and assembled in a prototypal EFC fed with glucose. Polarization and power density curves demonstrated that GOx/Nafion system was able to generate power, exploiting a Nafion-assisted electron transfer process to the electrode. Our findings are consistent with the onset of pH-dependent conformational equilibrium for the enzyme secondary structure and its active site. Significantly, the protective effect exerted by Nafion on the enzyme structure may be tuned by varying parameters such as the pH to fabricate durable EFCs with good electrocatalytic performance.
Collapse
Affiliation(s)
- Barbara Mecheri
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata" , Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Diana De Porcellinis
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata" , Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Patricia T Campana
- School of Arts, Sciences and Humanities, University of São Paulo , Av. Arlindo Bettio, 1000, São Paulo CEP 03828-000, São Paulo, Brazil
| | - Alberto Rainer
- Università Campus Bio-Medico di Roma , Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Marcella Trombetta
- Università Campus Bio-Medico di Roma , Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Alexandre Marletta
- Institute of Physics, Federal University of Uberlândia , Avenida João Naves de Ávila, 2121, Uberlândia, CEP 38408-100, Minas Gerais, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo , CP 369, São Carlos 13560-970, São Paulo, Brazil
| | - Silvia Licoccia
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata" , Via della Ricerca Scientifica, 00133 Rome, Italy
| |
Collapse
|
28
|
Cheng C, Kao CY. An Electrochemical Biosensor with Uricase Immobilized on Functionalized Gold Coated Copper Wire Electrode for Urinary Uric Acid Assay. ELECTROANAL 2015. [DOI: 10.1002/elan.201500539] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
29
|
Zhang Y, Yan M, Gao P, Jiang J, Zhang G, Li J, Shuang S. Immobilization of uricase-gold nanoparticles composite nanomaterial on a biofilm and its application to determination of uric acid. APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815040171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Effect of grain-size on the ethanol vapor sensing properties of room-temperature sputtered ZnO thin films. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1539-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Ghosh T, Sarkar P, Turner AP. A novel third generation uric acid biosensor using uricase electro-activated with ferrocene on a Nafion coated glassy carbon electrode. Bioelectrochemistry 2015; 102:1-9. [DOI: 10.1016/j.bioelechem.2014.11.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 11/05/2014] [Accepted: 11/08/2014] [Indexed: 10/24/2022]
|
32
|
Zhao Y, Fang X, Gu Y, Yan X, Kang Z, Zheng X, Lin P, Zhao L, Zhang Y. Gold nanoparticles coated zinc oxide nanorods as the matrix for enhanced l-lactate sensing. Colloids Surf B Biointerfaces 2015; 126:476-80. [DOI: 10.1016/j.colsurfb.2014.12.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/24/2014] [Accepted: 12/30/2014] [Indexed: 11/25/2022]
|
33
|
Zhang K, Qi J, Tian Y, Lu S, Liang Q, Zhang Y. Influence of piezoelectric effect on dissolving behavior and stability of ZnO micro/nanowires in solution. RSC Adv 2015. [DOI: 10.1039/c4ra12659a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We demonstrate for the first time the corrosion behavior of ZnO micro/nanowires under stress, investigating the influence of the piezoelectric effect on the corrosion of ZnO micro/nanowires in acidic and alkaline environments.
Collapse
Affiliation(s)
- Kui Zhang
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- People’s Republic of China
| | - Junjie Qi
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- People’s Republic of China
| | - Yuan Tian
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- People’s Republic of China
| | - Shengnan Lu
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- People’s Republic of China
| | - Qijie Liang
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- People’s Republic of China
| | - Yue Zhang
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- People’s Republic of China
- Key Laboratory of New Energy Materials and Technologies
| |
Collapse
|
34
|
Warriner K, Reddy SM, Namvar A, Neethirajan S. Developments in nanoparticles for use in biosensors to assess food safety and quality. Trends Food Sci Technol 2014. [DOI: 10.1016/j.tifs.2014.07.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Nanorod arrays composed of zinc oxide modified with gold nanoparticles and glucose oxidase for enzymatic sensing of glucose. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1364-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Enhancing Performance of Uricase Using Multiwalled Carbon Nanotube Doped Polyaniline. Appl Biochem Biotechnol 2014; 174:1174-87. [DOI: 10.1007/s12010-014-0996-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/19/2014] [Indexed: 10/25/2022]
|
37
|
Bao Y, Zhang Y, Ma J, Zhao Y, Wu D. Controllable fabrication of one-dimensional ZnO nanoarrays and their application in constructing silver trap structures. RSC Adv 2014. [DOI: 10.1039/c4ra05331a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
1-D ZnO NAs with controllable density and diameter have successfully been synthesized and found potential applications in silver trap construction.
Collapse
Affiliation(s)
- Yan Bao
- College of Resources and Environment
- Shaanxi University of Science & Technology
- Xi'an 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology
- Xi'an 710021, China
| | - Yonghui Zhang
- College of Resources and Environment
- Shaanxi University of Science & Technology
- Xi'an 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology
- Xi'an 710021, China
| | - Jianzhong Ma
- College of Resources and Environment
- Shaanxi University of Science & Technology
- Xi'an 710021, China
- School of Materials Science and Technology
- Hanzhong 723001, China
| | - Yanru Zhao
- College of Resources and Environment
- Shaanxi University of Science & Technology
- Xi'an 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology
- Xi'an 710021, China
| | - Duoduo Wu
- College of Resources and Environment
- Shaanxi University of Science & Technology
- Xi'an 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology
- Xi'an 710021, China
| |
Collapse
|
38
|
|