Ag nanoparticle in situ decorated on Ti
3C
2T
x with excellent SERS and EIS immunoassay performance for beta-human chorionic gonadotropin.
Mikrochim Acta 2022;
189:348. [PMID:
36002597 DOI:
10.1007/s00604-022-05426-y]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/21/2022] [Indexed: 10/15/2022]
Abstract
Two-dimensional transition metal carbides, nitrides, and carbonitrides (MXene), with excellent optical and electrical properties, are promising substrates for surface-enhanced Raman scattering (SERS) and electrochemical sensors. Therefore, a unique 3D-decorated structure containing silver (Ag) nanoparticles and Ti3C2Tx was designed as the substrates of SERS and electrochemical impedance spectroscopy (EIS) immunosensors. The Ag/Ti3C2Tx composite significantly increases Raman intensity, which is attributed to the synergistic effect of Ti3C2Tx and Ag nanoparticles. Based on the SERS performance of the Ag/Ti3C2Tx composite, the magnetic properties of Fe3O4 and the specificity of antigen-antibody, a sandwich-structured SERS immunosensor is constructed, which can effectively detect trace amounts of beta-human chorionic gonadotropin (β-hCG). The SERS immunosensor exhibits a wide linear range of 5.0 × 10-6-1.0 mIU mL-1, and a low detection limit of 9.0 × 10-7 mIU mL-1. Meanwhile, the Ag/Ti3C2Tx-based EIS immunosensor is constructed for the portable detection of β-hCG, which exhibits a wide linear range of 5.0 × 10-2-1.0 × 102 mIU mL-1, a low detection limit of 9.5 × 10-3 mIU mL-1. Moreover, two immunosensors can be used to detect actual serum samples with satisfactory recovery (98.5-102.2%). This work could guide the design of low-cost, sensitive, flexible, and portable biosensors. The SERS and EIS substrates composited with Ti3C2Tx and Ag nanoparticles enable excellent performance for detecting β-hCG.
Collapse