1
|
Mohamad Nor N, Ridhuan NS, Abdul Razak K. Progress of Enzymatic and Non-Enzymatic Electrochemical Glucose Biosensor Based on Nanomaterial-Modified Electrode. BIOSENSORS 2022; 12:bios12121136. [PMID: 36551103 PMCID: PMC9775494 DOI: 10.3390/bios12121136] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 05/09/2023]
Abstract
This review covers the progress of nanomaterial-modified electrodes for enzymatic and non-enzymatic glucose biosensors. Fundamental insights into glucose biosensor components and the crucial factors controlling the electrochemical performance of glucose biosensors are discussed in detail. The metal, metal oxide, and hybrid/composite nanomaterial fabrication strategies for the modification of electrodes, mechanism of detection, and significance of the nanomaterials toward the electrochemical performance of enzymatic and non-enzymatic glucose biosensors are compared and comprehensively reviewed. This review aims to provide readers with an overview and underlying concept of producing a reliable, stable, cost-effective, and excellent electrochemical performance of a glucose biosensor.
Collapse
Affiliation(s)
- Noorhashimah Mohamad Nor
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia
| | - Nur Syafinaz Ridhuan
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia
| | - Khairunisak Abdul Razak
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia
- NanoBiotechnology Research & Innovation (NanoBRI), Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia
- Correspondence:
| |
Collapse
|
2
|
Revealing the effect of multidimensional ZnO@CNTs/RGO composite for enhanced electrochemical detection of flufenamic acid. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106448] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
3
|
Beitollahi H, Tajik S, Garkani Nejad F, Safaei M. Recent advances in ZnO nanostructure-based electrochemical sensors and biosensors. J Mater Chem B 2021; 8:5826-5844. [PMID: 32542277 DOI: 10.1039/d0tb00569j] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanostructured metal oxides, such as zinc oxide (ZnO), are considered as excellent materials for the fabrication of highly sensitive and selective electrochemical sensors and biosensors due to their good properties, including a high specific surface area, high catalytic efficiency, strong adsorption ability, high isoelectric point (IEP, 9.5), wide band gap (3.2 eV), biocompatibility and high electron communication features. Thus, ZnO nanostructures are widely used to fabricate efficient electrochemical sensors and biosensors for the detection of various analytes. In this review, we have discussed the synthesis of ZnO nanostructures and the advances in various ZnO nanostructure-based electrochemical sensors and biosensors for medical diagnosis, pharmaceutical analysis, food safety, and environmental pollution monitoring.
Collapse
Affiliation(s)
- Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | | | | | | |
Collapse
|
4
|
ITO electrode modified with Pt nanodendrites-decorated ZnO nanorods for enzymatic glucose sensor. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-020-04884-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Li X, Zhang M, Hu Y, Xu J, Sun D, Hu T, Ni Z. Screen-printed electrochemical biosensor based on a ternary Co@MoS 2/rGO functionalized electrode for high-performance non-enzymatic glucose sensing. Biomed Microdevices 2020; 22:17. [PMID: 32076841 DOI: 10.1007/s10544-020-0472-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, cobalt oxides functionalized MoS2/reduced graphene oxide was synthesized via a facile one-pot hydrothermal approach. Morphology and crystal structure of this ternary nanoarchitecture were characterized through scanning electron microscopy, transmission electron microscopy, Raman spectra and X-ray photoelectron spectroscopy. An ultrasensitive non-enzymatic glucose sensor was developed by decorating this ternary nanohybrid on the working electrode of a screen-printed electrochemical sensor. Cycle sweep voltammetry and amperometry were used to study the electro-catalytic activity of the modified working electrode, which demonstrated superior catalytic activity towards glucose oxidation with an extremely low detection limit of 30 nM. Meanwhile, this sensor showed an excellent selectivity in the presence of interfering species such as uric acid, ascorbic acid, etc. Based on the screen-printed technique, enzyme mimic nanomaterials could be easily introduced into portable devices, which opens the way to take non-enzymatic glucose electrochemical sensing towards point-of-care.
Collapse
Affiliation(s)
- Xiao Li
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Man Zhang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Yujie Hu
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Jian Xu
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Dongke Sun
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Tao Hu
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
6
|
Palakollu VN, Chiwunze TE, Liu C, Karpoormath R. Electrochemical sensitive determination of acetaminophen in pharmaceutical formulations at iron oxide/graphene composite modified electrode. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
7
|
Jandaghi N, Jahani S, Foroughi MM, Kazemipour M, Ansari M. Cerium-doped flower-shaped ZnO nano-crystallites as a sensing component for simultaneous electrochemical determination of epirubicin and methotrexate. Mikrochim Acta 2019; 187:24. [DOI: 10.1007/s00604-019-4016-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/09/2019] [Indexed: 11/28/2022]
|
8
|
Jayanthi Kalaivani G, Suja SK. Nanomolar level sensing of glucose in food samples using glucose oxidase confined MWCNT-Inulin-TiO 2 bio-nanocomposite. Food Chem 2019; 298:124981. [PMID: 31260993 DOI: 10.1016/j.foodchem.2019.124981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 11/17/2022]
Abstract
Development of an effective sensor for sensing glucose in commercially available "sugar free" food products is important as people are becoming diabetic health conscious. Although multi-walled carbon nanotubes (MWCNTs) possess interesting electrical properties, their hydrophobic nature limits their applications. Their hydrophilicity can be improved through modification. In the present study, Inulin, that was isolated from Allium sativum L. using hot water diffusion and incorporated with titanium dioxide (TiO2), was used for the modification of MWCNTs. The as-synthesized MWCNT-Inulin-TiO2 bio-nanocomposite immobilized with glucose oxidase (GOx) was incorporated into the carbon paste matrix and was utilized for the sensing of glucose in food products. Differential pulse voltammetric studies revealed that the fabricated electrode demonstrated good linear range (1.6 nM to 1 μM) and was sensitive to nanomolar concentrations of glucose with a very low limit of detection up to 0.82 nM and exhibited a long term stability of 150 days.
Collapse
Affiliation(s)
| | - S K Suja
- Department of Chemistry, Lady Doak College, Madurai, India.
| |
Collapse
|
9
|
Cheng X, Sun L, Li R, Huang Y, Xu H, Wang Z, Li ZL, Jiang H, Ma J. Organic polymer dot-based fluorometric determination of the activity of horseradish peroxidase and of the concentrations of glucose and the insecticidal protein toxin Cry1Ab/Ac. Mikrochim Acta 2019; 186:731. [DOI: 10.1007/s00604-019-3831-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/14/2019] [Indexed: 01/27/2023]
|
10
|
ZnO/ZnAl₂O₄ Nanocomposite with 3D Sphere-Like Hierarchical Structure for Photocatalytic Reduction of Aqueous Cr(VI). MATERIALS 2018; 11:ma11091624. [PMID: 30189662 PMCID: PMC6163682 DOI: 10.3390/ma11091624] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/19/2018] [Accepted: 09/03/2018] [Indexed: 11/16/2022]
Abstract
Three dimensional (3D) ZnO/ZnAl2O4 nanocomposites (ZnnAl-MMO) were synthesized by a simple urea-assisted hydrothermal process and subsequent high-temperature calcination. The as-prepared samples and their precursors were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (DRS), and Photoluminescence spectra (PL). It was observed that the morphology of ZnnAl-MMO nanocomposites could be tuned from cubic aggregates, hierarchically flower-like spheres to porous microspheres by simply changing the molar ratio of metal cations of the starting reaction mixtures. The photocatalytic performance of ZnO/ZnAl2O4 nanocomposites in the photoreduction of aqueous Cr(VI) indicated that the as-prepared 3D hierarchical sphere-like ZnnAl-MMO nanocomposite showed excellent photocatalytic activity of Cr(VI) reduction under UV light irradiation. The results indicated that the maximum removal percentage of aqueous Cr(VI) was 98% within four hours at 10 mg/L initial concentration of Cr(VI), owing to the effective charge separation and diversion of photogenerated carriers across the heterojunction interface of the composite. Our study put forward a facile method to fabricate hierarchical ZnO/ZnAl2O4 composites with potential applications for wastewater treatment.
Collapse
|
11
|
Ghazizadeh AJ, Afkhami A, Bagheri H. Voltammetric determination of 4-nitrophenol using a glassy carbon electrode modified with a gold-ZnO-SiO2 nanostructure. Mikrochim Acta 2018; 185:296. [DOI: 10.1007/s00604-018-2840-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/06/2018] [Indexed: 10/16/2022]
|
12
|
Tarish S, Xu Y, Wang Z, Mate F, Al-Haddad A, Wang W, Lei Y. Highly efficient biosensors by using well-ordered ZnO/ZnS core/shell nanotube arrays. NANOTECHNOLOGY 2017; 28:405501. [PMID: 28749787 DOI: 10.1088/1361-6528/aa82b0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We have studied the fabrication of highly efficient glucose sensors using well-ordered heterogeneous ZnO/ZnS core/shell nanotube arrays (CSNAs). The modified electrodes exhibit a superior electrochemical response towards ferrocyanide/ferricyanide and in glucose sensing. Further, the fabricated glucose biosensor exhibited good performance over an acceptable linear range from 2.39 × 10-5 to 2.66 × 10-4 mM, with a sensitivity of 188.34 mA mM-1 cm-2, which is higher than that of the ZnO nanotube array counterpart. A low limit of detection was realized (24 μM), which is good compared with electrodes based on conventional structures. In addition, the enhanced direct electrochemistry of glucose oxidase indicates the fast electron transfer of ZnO/ZnS CSNA electrodes, with a heterogeneous electron transfer rate constant (K s) of 1.69 s-1. The fast electron transfer is attributed to the high conductivity of the modified electrodes. The presented ZnS shell can facilitate the construction of future sensors and enhance the ZnO surface in a biological environment.
Collapse
Affiliation(s)
- Samar Tarish
- Institute for Physics and IMN MacroNano®, Ilmenau University of Technology, Professor-Schmidt-Straβe 26, D-98693 Ilmenau, Germany. Department of Physics, College of Science, University of Al-Mustansiriyah, Baghdad, Iraq
| | | | | | | | | | | | | |
Collapse
|
13
|
Physical and Electrochemical Properties of Iron Oxide Nanoparticles-modified Electrode for Amperometric Glucose Detection. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.07.097] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Pakapongpan S, Poo-arporn RP. Self-assembly of glucose oxidase on reduced graphene oxide-magnetic nanoparticles nanocomposite-based direct electrochemistry for reagentless glucose biosensor. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:398-405. [DOI: 10.1016/j.msec.2017.03.031] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/11/2017] [Accepted: 03/03/2017] [Indexed: 11/28/2022]
|
15
|
Gallay P, Tosi E, Madrid R, Tirado M, Comedi D. Glucose biosensor based on functionalized ZnO nanowire/graphite films dispersed on a Pt electrode. NANOTECHNOLOGY 2016; 27:425501. [PMID: 27622391 DOI: 10.1088/0957-4484/27/42/425501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We present a glucose biosensor based on ZnO nanowire self-sustained films grown on compacted graphite flakes by the vapor transport method. Nanowire/graphite films were fragmented in water, filtered to form a colloidal suspension, subsequently functionalized with glucose oxidase and finally transferred to a metal electrode (Pt). The obtained devices were evaluated using scanning electron microscopy, energy-dispersive x-ray spectroscopy, cyclic voltammetry and chronoamperometry. The electrochemical responses of the devices were determined in buffer solutions with successive glucose aggregates using a tripolar electrode system. The nanostructured biosensors showed excellent analytical performance, with linear response to glucose concentrations, high sensitivity of up to ≈17 μA cm(-2) mM(-1) in the 0.03-1.52 mM glucose concentration range, relatively low Michaelis-Menten constant, excellent reproducibility and a fast response. The detection limits are more than an order of magnitude lower than those achievable in commercial biosensors for glucose control, which is promising for the development of glucose monitoring methods that do not require blood extraction from potentially diabetic patients. The strong detection enhancements provided by the functionalized nanostructures are much larger than the electrode surface-area increase and are discussed in terms of the physical and chemical mechanisms involved in the detection and transduction processes.
Collapse
Affiliation(s)
- P Gallay
- NanoProject and Laboratorio de Física del Sólido, Dep. Fisica, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, 4000 San Miguel de Tucumán, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Argentina
| | | | | | | | | |
Collapse
|
16
|
Yao H, Gan Q, Peng J, Huang S, Zhu M, Shi K. A Stimuli-Responsive Biosensor of Glucose on Layer-by-Layer Films Assembled through Specific Lectin-Glycoenzyme Recognition. SENSORS (BASEL, SWITZERLAND) 2016; 16:E563. [PMID: 27104542 PMCID: PMC4851077 DOI: 10.3390/s16040563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 01/14/2023]
Abstract
The research on intelligent bioelectrocatalysis based on stimuli-responsive materials or interfaces is of great significance for biosensors and other bioelectronic devices. In the present work, lectin protein concanavalin A (Con A) and glycoenzyme glucose oxidase (GOD) were assembled into {Con A/GOD}n layer-by-layer (LbL) films by taking advantage of the biospecific lectin-glycoenzyme affinity between them. These film electrodes possess stimuli-responsive properties toward electroactive probes such as ferrocenedicarboxylic acid (Fc(COOH)₂) by modulating the surrounding pH. The CV peak currents of Fc(COOH)₂ were quite large at pH 4.0 but significantly suppressed at pH 8.0, demonstrating reversible stimuli-responsive on-off behavior. The mechanism of stimuli-responsive property of the films was explored by comparative experiments and attributed to the different electrostatic interaction between the films and the probes at different pH. This stimuli-responsive films could be used to realize active/inactive electrocatalytic oxidation of glucose by GOD in the films and mediated by Fc(COOH)₂ in solution, which may establish a foundation for fabricating novel stimuli-responsive electrochemical biosensors based on bioelectrocatalysis with immobilized enzymes.
Collapse
Affiliation(s)
- Huiqin Yao
- Department of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Qianqian Gan
- Department of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Juan Peng
- State Key Laboratory Cultivation Base of Natural Gas Conversion, Ningxia University, Yinchuan 750021, China.
- School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Shan Huang
- Department of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Meilin Zhu
- Department of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Keren Shi
- State Key Laboratory Cultivation Base of Natural Gas Conversion, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
17
|
Palanisamy S, Wang YT, Chen SM, Thirumalraj B, Lou BS. Direct electrochemistry of immobilized hemoglobin and sensing of bromate at a glassy carbon electrode modified with graphene and β-cyclodextrin. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1811-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
A glassy carbon electrode modified with a composite consisting of reduced graphene oxide, zinc oxide and silver nanoparticles in a chitosan matrix for studying the direct electron transfer of glucose oxidase and for enzymatic sensing of glucose. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1791-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Nur Topkaya S, Ozkan-Ariksoysal D. Prostate Cancer Biomarker Detection with Carbon Nanotubes Modified Screen Printed Electrodes. ELECTROANAL 2015. [DOI: 10.1002/elan.201501003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Yuan M, Li J, Yu Y, Fu Y, Fong A, Hu J. Fabrication of a Fe2O3Nanoparticles Implantation-modified Electrode and its Applications in Electrochemical Sensing. ELECTROANAL 2015. [DOI: 10.1002/elan.201500585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Terse-Thakoor T, Komori K, Ramnani P, Lee I, Mulchandani A. Electrochemically Functionalized Seamless Three-Dimensional Graphene-Carbon Nanotube Hybrid for Direct Electron Transfer of Glucose Oxidase and Bioelectrocatalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:13054-13061. [PMID: 26551320 DOI: 10.1021/acs.langmuir.5b03273] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Three-dimensional seamless chemical vapor deposition (CVD) grown graphene-carbon nanotubes (G-CNT) hybrid film has been studied for its potential in achieving direct electron transfer (DET) of glucose oxidase (GOx) and its bioelectrocatalytic activity in glucose detection. A two-step CVD method was employed for the synthesis of seamless G-CNT hybrid film where CNTs are grown on already grown graphene film on copper foil using iron as a catalyst. Physical characterization using SEM and TEM show uniform dense coverage of multiwall carbon nanotubes (MWCNT) grown directly on graphene with seamless contacts. The G-CNT hybrid film was electrochemically modified to introduce oxygenated functional groups for DET favorable immobilization of GOx. Pristine and electrochemically functionalized G-CNT film was characterized by electrochemical impedance spectroscopy (EIS), cyclic voltammetry, X-ray photoelectron-spectroscopy, and Raman spectroscopy. The DET between GOx and electrochemically oxidized G-CNT electrode was studied using cyclic voltammetry which showed a pair of well-defined and quasi-reversible redox peaks with a formal potential of -459 mV at pH 7 corresponding to the redox site of GOx. The constructed electrode detected glucose concentration over the clinically relevant range of 2-8 mM with the highest sensitivity of 19.31 μA/mM/cm(2) compared to reported composite hybrid electrodes of graphene oxide and CNTs. Electrochemically functionalized CVD grown seamless G-CNT structure used in this work has potential to be used for development of artificial mediatorless redox enzyme based biosensors and biofuel cells.
Collapse
Affiliation(s)
| | - Kikuo Komori
- Institute of Industrial Science, University of Tokyo , Tokyo 153-8505, Japan
| | | | | | | |
Collapse
|
22
|
Devasenathipathy R, Karthik R, Chen SM, Ali MA, Mani V, Lou BS, Al-Hemaid FMA. Enzymatic glucose biosensor based on bismuth nanoribbons electrochemically deposited on reduced graphene oxide. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1545-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
23
|
Palanisamy S, Devasenathipathy R, Chen SM, Ajmal Ali M, Karuppiah C, Balakumar V, Prakash P, Elshikh MS, Al-Hemaid FMA. Direct Electrochemistry of Glucose Oxidase at Reduced Graphene Oxide and β-Cyclodextrin Composite Modified Electrode and Application for Glucose Biosensing. ELECTROANAL 2015. [DOI: 10.1002/elan.201500150] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|