1
|
Simplistic hydrothermal synthesis approach for fabricating photoluminescent carbon dots and its potential application as an efficient sensor probe for toxic lead(II) ion detection. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2239-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
2
|
Li X, Zhao CX, Lin L. Plasma-based instant synthesis of functionalized gold nanoparticles for colorimetric detection of lead ions. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
3
|
Chatterjee S, Lou XY, Liang F, Yang YW. Surface-functionalized gold and silver nanoparticles for colorimetric and fluorescent sensing of metal ions and biomolecules. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214461] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Mehta VN, Ghinaiya N, Rohit JV, Singhal RK, Basu H, Kailasa SK. Ligand chemistry of gold, silver and copper nanoparticles for visual read-out assay of pesticides: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
5
|
Saren RK, Banerjee S, Mondal B, Senapati S, Tripathy T. An electrochemical sensor–adsorbent for lead (Pb 2+) ions in an aqueous environment based on Katiragum–Arginine Schiff base. NEW J CHEM 2022. [DOI: 10.1039/d2nj04190a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A dual functional material fulfilling twin objectives; simultaneous sensing and adsorption of Pb2+ ions in an aqueous medium.
Collapse
Affiliation(s)
- Rakesh Kumar Saren
- Postgraduate Division of Chemistry, Midnapore College (Autonomous), Midnapore, PaschimMedinipur, 721101, West Bengal, India
| | - Shankha Banerjee
- Department of Biotechnology, BJM School of Bioscience, Indian Institute of Technology Madras, Chennai 600036, India
| | - Barun Mondal
- Postgraduate Division of Chemistry, Midnapore College (Autonomous), Midnapore, PaschimMedinipur, 721101, West Bengal, India
| | - Sanjib Senapati
- Department of Biotechnology, BJM School of Bioscience, Indian Institute of Technology Madras, Chennai 600036, India
| | - Tridib Tripathy
- Postgraduate Division of Chemistry, Midnapore College (Autonomous), Midnapore, PaschimMedinipur, 721101, West Bengal, India
| |
Collapse
|
6
|
Desai ML, Basu H, Saha S, Singhal RK, Kailasa SK. Fluorescence enhancement of bovine serum albumin gold nanoclusters from La3+ ion: Detection of four divalent metal ions (Hg2+, Cu2+, Pb2+ and Cd2+). J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116239] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Zubenko AD, Egorova BV, Zamurueva LS, Kalmykov SN, Fedorova OA. Synthesis of benzoaza-15(18)-crown-5(6) ethers and study of their complexes with lead(II). MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Montes-García V, Squillaci MA, Diez-Castellnou M, Ong QK, Stellacci F, Samorì P. Chemical sensing with Au and Ag nanoparticles. Chem Soc Rev 2021; 50:1269-1304. [PMID: 33290474 DOI: 10.1039/d0cs01112f] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Noble metal nanoparticles (NPs) are ideal scaffolds for the fabrication of sensing devices because of their high surface-to-volume ratio combined with their unique optical and electrical properties which are extremely sensitive to changes in the environment. Such characteristics guarantee high sensitivity in sensing processes. Metal NPs can be decorated with ad hoc molecular building blocks which can act as receptors of specific analytes. By pursuing this strategy, and by taking full advantage of the specificity of supramolecular recognition events, highly selective sensing devices can be fabricated. Besides, noble metal NPs can also be a pivotal element for the fabrication of chemical nose/tongue sensors to target complex mixtures of analytes. This review highlights the most enlightening strategies developed during the last decade, towards the fabrication of chemical sensors with either optical or electrical readout combining high sensitivity and selectivity, along with fast response and full reversibility, with special attention to approaches that enable efficient environmental and health monitoring.
Collapse
Affiliation(s)
- Verónica Montes-García
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000 Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
9
|
Berlina AN, Sotnikov DV, Komova NS, Zherdev AV, Dzantiev BB. Limitations for colorimetric aggregation assay of metal ions and ways of their overcoming. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:250-257. [PMID: 33355543 DOI: 10.1039/d0ay02068k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of analytical methods for the determination of metal ions in water is one of the priority tasks for efficient environmental monitoring. The use of modified gold nanoparticles and the colorimetric detection of their aggregation initiated by ions binding with specific receptors on the nanoparticle surface has high potential for simple testing. However, the limits of this approach and the parameters determining the assay sensitivity are not clear, and the possibilities of different assay formats are estimated only empirically. We have proposed a mathematical description of the aggregation processes in the assay and have estimated the detection limits of an aptamer-based assay of Pb2+ ions theoretically and experimentally. In the studied assay, gold nanoparticles modified with G,T-enriched aptamer were used, and their aggregation caused by the interaction with Pb2+ ions was controlled via a color change. The experimentally determined limit of Pb2+ detection was 700 ppb, which was in good agreement with theoretical calculations. An examination of the model showed that the limiting parameter of the assay is the binding constant of the aptamer-Pb2+ ion interaction. To overcome this limitation without searching for alternate receptors, two methods have been proposed, namely additional aggregation-causing components or centrifugation. These approaches lowered the detection limit to 150 ppb and even to 0.4 ppb. The second value accords with regulatory demands for the permissible levels of water source contamination, and the corresponding approach has significant competitive potential due to its rapidity, simple implementation, and the visual assessment of the assay results.
Collapse
Affiliation(s)
- Anna N Berlina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| | - Dmitry V Sotnikov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| | - Nadezhda S Komova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| |
Collapse
|
10
|
Arenaza-Corona A, Couce-Fortúnez MD, de Blas A, Morales-Morales D, Santillan R, Höpfl H, Rodríguez-Blas T, Barba V. Further Approaches in the Design of Antitumor Agents with Response to Cell Resistance: Looking toward Aza Crown Ether-dtc Complexes. Inorg Chem 2020; 59:15120-15134. [PMID: 33000942 DOI: 10.1021/acs.inorgchem.0c02068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The dianionic aza crown ether-dtc N,N'-bis(dithiocarbamate)-1,10-diaza-18-crown-6 (L2-) is a versatile ligand capable of yielding binuclear complexes with group 10 elements, also known as Ni-triade, [μ-(κ2-S,-S'-L)M2(PPh3)4]Cl2 (M = Pd (1), Pt (2)), [μ-(κ2-S,-S'-L)M2(PPh3)4](BPh4)2 (M = Pd (3), Pt (4)), and μ-(κ-S,-S'-L)Ni2(PPh3)2Cl2 (5), and has proven to be an excellent option to the design of metal-based drugs able to provide multiple response to cell resistance. Palladium and platinum complexes, 1 and 2, were tested for cytotoxicity in the human cervix carcinoma cell line HeLa-229, the human ovarian carcinoma cell line A2780, and the cisplatin-resistant mutant A2780cis, finding significant activity toward all three cancer cell lines, with low micromolar IC50 values, comparable to cisplatin. Markedly, against the cisplatin resistant cell line A2780cis, compound 2 exhibits better cytotoxic activity than the clinical drug (IC50 = 2.3 ± 0.2 μM for 2 versus 3.6 ± 0.5 μM for cisplatin). Moreover, an enhancement of the antitumor response is achieved when adding an equimolar amount of alkali metal chloride (NaCl or KCl) to the medium, for instance, testing compound 1 against the cisplatin-resistant A2780cis cells, the IC50 decreases from 9.3 ± 0.4 to 7.4 ± 0.3 and 5.4 ± 0.1 μM, respectively, after addition of the salt solution. For the platinum derivative 2, the IC50 improves by ca. 40% reaching 1.3 ± 0.1 μM when potassium chloride is added. Likewise, the resistant factor found for 2 (RF = 1) confirms that this complex circumvents cisplatin-resistance in A2780cis and is improved with the addition of potassium chloride (RF = 0.65). The presence of the aza crown ether moiety as linker in the systems studied herein is a key point since, in addition to allowing and facilitating interaction with alkali metal ions, this unit is flexible enough to adapt to a variety of environments, as confirmed by the X-ray crystal structures described, where different conformations and ways to fold in are found. In order to gain insight into the electronic and structural facts involved in the interaction of complex 2 with the alkali metal ions, a DFT study was performed, and the description of the molecular electrostatic potentials (MEPs) is also presented.
Collapse
Affiliation(s)
- Antonino Arenaza-Corona
- Grupo METMED, Departamento de Quı́mica & Centro de Investigaciones Cientı́ficas Avanzadas (CICA), Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain.,Centro de Investigaciones Quı́micas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, C.P., 62209 Cuernavaca, Morelos, Mexico
| | - M Delfina Couce-Fortúnez
- Departamento de Quı́mica Inorgánica, Instituto de Investigación Sanitaria Galicia Sur, Facultade de Quı́mica, Universidad de Vigo, 36310 Vigo, Spain
| | - Andrés de Blas
- Grupo METMED, Departamento de Quı́mica & Centro de Investigaciones Cientı́ficas Avanzadas (CICA), Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain
| | - David Morales-Morales
- Instituto de Quı́mica, Universidad Nacional Autónoma de México, Cd. Universitaria, Circuito Exterior, Coyoacán, 04510 Ciudad de México, Mexico
| | - Rosa Santillan
- Departamento de Quı́mica, Centro de Investigación y de Estudios Avanzados del IPN, 07000 Ciudad de México, Mexico
| | - Herbert Höpfl
- Centro de Investigaciones Quı́micas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, C.P., 62209 Cuernavaca, Morelos, Mexico
| | - Teresa Rodríguez-Blas
- Grupo METMED, Departamento de Quı́mica & Centro de Investigaciones Cientı́ficas Avanzadas (CICA), Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain
| | - Victor Barba
- Centro de Investigaciones Quı́micas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, C.P., 62209 Cuernavaca, Morelos, Mexico
| |
Collapse
|
11
|
Zhao YY, Yang JM, Jin XY, Cong H, Ge QM, Liu M, Tao Z. Recent Development of Supramolecular Sensors Constructed by Hybridization of Organic Macrocycles with Nanomaterials. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200214110110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Macrocyclic compounds have attracted tremendous attention for their superior
performance in supramolecular recognition, catalysis, and host-guest interaction. With
these admirable properties, macrocyclic compounds were used as modifiers for enhancing
the sensitivity and selectivity of electrodes and optical sensors. The classic macrocyclic
compounds, including crown ethers, cyclodextrins, calixarenes, cucurbiturils, and pillararenes,
were employed as receptors for electrochemical and optical sensors to develop
new analytical methods with the wilder detection range, lower detection limit, and better
tolerance of interference. Macrocyclic molecules functionalized with nanomaterials, the
small entities with dimensions in the nanoscale, realized the versatility and diversification
of the nano-hybrid materials, which improved the capabilities of recognition and response
with the combining characteristics of two components. Herein, this review focused on the development in the
research field of hybridization of organic macrocycles with nanoparticles and their applications for chemosensors,
aiming at both existing researchers in the field and who would like to enter into the research.
Collapse
Affiliation(s)
- Yong-Yi Zhao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Jian-Mei Yang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xian-Yi Jin
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Hang Cong
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Qing-Mei Ge
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Mao Liu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| |
Collapse
|
12
|
Assembly of 6-aza-2-thiothymine on gold nanoparticles for selective and sensitive colorimetric detection of pencycuron in water and food samples. Talanta 2019; 205:120087. [PMID: 31450484 DOI: 10.1016/j.talanta.2019.06.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022]
Abstract
A facile and novel nanosensor analytical strategy was developed for the colorimetric detection of pencycuron fungicide in rice, potato, cabbage, and water samples based on the pencycuron-induced aggregation of 6-aza-2-thiothymine-functionalized gold nanoparticles (ATT-AuNPs). The ATT-AuNPs exhibited good stability and were characterized with UV-visible spectroscopy, Fourier transform infrared (FT-IR) spectrometry, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential techniques. The addition of pencycuron facilitated strong non-covalent interactions (electrostatic, van der Waals, and H bonding) between pencycuron and ATT-AuNPs, inducing a significant red shift in the surface plasmon resonance (SPR) peak of ATT-AuNPs along with a color change from red to blue. A linear equation was established between absorption ratio (A720/A528) and pencycuron concentration (2.5-100 μM) with a correlation coefficient (R2) of 0.9915. The detection limit was calculated to be 0.42 μM, which was much lower than that of other analytical methods. The designed ATT-AuNP serves as a promising nanosensor for the rapid, simple, and selective label-free colorimetric detection of pencycuron in rice, potato, cabbage, and water samples, is highly sensitive, and does not require sophisticated instruments, tedious sample preparations, and time-consuming separation and pre-concentration procedures.
Collapse
|
13
|
|
14
|
Abukhadra MR, Bakry BM, Adlii A, Yakout SM, El-Zaidy ME. Facile conversion of kaolinite into clay nanotubes (KNTs) of enhanced adsorption properties for toxic heavy metals (Zn 2+, Cd 2+, Pb 2+, and Cr 6+) from water. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:296-308. [PMID: 31009894 DOI: 10.1016/j.jhazmat.2019.04.047] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/12/2019] [Accepted: 04/14/2019] [Indexed: 05/18/2023]
Abstract
Kaolinite nanotubes (KNTs) were synthesized from kaolinite by ultrasonic scrolling and characterized using X-ray diffractometer, scanning and transmission electron microscopes; and FTIR-FT Raman spectrometer. The synthetic KNTs appear as multi-walled scrolls of 12 nm average pore diameter and 50-600 nm particle length; and exhibit surface area of 105 m2/g. KNTs were used as adsorbents for Zn2+, Cd2+, Pb2+, and Cr6+ with uptake capacities of 103 mg/g, 116 mg/g, 89 mg/g, and 91 mg/g, respectively. The equilibration time of Cd2+ and Pb2+ adsorption is 360 min and for Cr6+ and Zn2+ area 120 min and 240 min, respectively. KNTs adsorption systems can be described mainly by Lagergren-second order and Freundlich models (R2> 0.95) as kinetic and isotherm models. This reflected multilayer adsorption forms with chemical sharing or ion exchange processes. KNTs exhibits high reusability and used for five cycles in the removal of the studied metals (100 mg/L). The removal percentages declined by 20.5%, 15.12%, 22.8% and 23.16% with repeating the reused cycles from cycle 1 to cycle 5 for Zn2+, Cd2+, Pb2+, and Cr6+, respectively. KNTs were applied successfully in realistic purification of tap water, groundwater, and sewage water from the inspected metals.
Collapse
Affiliation(s)
| | - Belal Mohamed Bakry
- Department of Chemistry, Faculty of Science, Beni-Suef University, 62514, Beni-Suef City, Egypt
| | - Alyaa Adlii
- Department of Chemistry, Faculty of Education, Beni-Suef University, 62514, Beni-Suef City, Egypt
| | - Sobhy M Yakout
- Biochemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia; Hot Laboratories and Waste Management Center, Atomic Energy Authority, Cairo, 13759, Egypt
| | - Mohamed E El-Zaidy
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
15
|
Sarkar D, Ganguli S, Samanta T, Mahalingam V. Design of Lanthanide-Doped Colloidal Nanocrystals: Applications as Phosphors, Sensors, and Photocatalysts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6211-6230. [PMID: 30149717 DOI: 10.1021/acs.langmuir.8b01593] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The unique optical characteristics of lanthanides (Ln3+) such as high color purity, long excited-state lifetimes, less perturbation of excited states by the crystal field environment, and the easy spectral conversion of wavelengths through upconversion and downconversion processes have caught the attention of many scientists in the recent past. To broaden the scope of using these properties, it is important to make suitable Ln3+-doped materials, particularly in colloidal forms. In this feature article, we discuss the different synthesis strategies for making Ln3+-doped nanoparticles in colloidal forms, particularly ways of functionalizing hydrophobic surfaces to hydrophilic surfaces to enhance their dispersibility and luminescence in aqueous media. We have enumerated the various strategies and sensitizers utilized to increase the luminescence of the nanoparticles. Furthermore, the use of these colloidal nanoparticle systems in sensing application by the appropriate selection of capping ligands has been discussed. In addition, we have shown how the energy transfer efficiency from Ce3+ to Ln3+ ions can be utilized for the detection of toxic metal ions and small molecules. Finally, we discuss examples where the spectral conversion ability of these materials has been used in photocatalysis and solar cell applications.
Collapse
Affiliation(s)
- Debashrita Sarkar
- Department of Chemical Sciences and Center for Advanced Functional Materials (CAFM) , Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur , 741246 , West Bengal , India
| | - Sagar Ganguli
- Department of Chemical Sciences and Center for Advanced Functional Materials (CAFM) , Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur , 741246 , West Bengal , India
| | - Tuhin Samanta
- Department of Chemical Sciences and Center for Advanced Functional Materials (CAFM) , Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur , 741246 , West Bengal , India
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences and Center for Advanced Functional Materials (CAFM) , Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur , 741246 , West Bengal , India
| |
Collapse
|
16
|
Studies on the visual screening method for fluoroquinolones based on the chain reaction of gold nanoparticles and its application in milk samples. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
17
|
Kaewprom C, Sricharoen P, Limchoowong N, Nuengmatcha P, Chanthai S. Resonance light scattering sensor of the metal complex nanoparticles using diethyl dithiocarbamate doped graphene quantum dots for highly Pb(II)-sensitive detection in water sample. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 207:79-87. [PMID: 30199716 DOI: 10.1016/j.saa.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/30/2018] [Accepted: 09/01/2018] [Indexed: 05/24/2023]
Abstract
This study was aimed to detect Pb2+ using diethyl dithiocarbamate-doped graphene quantum dots (DDTC-GQDs) based pyrolysis of citric acid. The excitation maximum wavelength (λmax, ex = 337 nm) of the DDTC-GQDs solution was blue shift from bare GQDs (λmax, ex = 365 nm), with the same emission maximum wavelength (λmax, em = 459 nm) indicating differences in the desired N, S matrices decorating in the nanoparticles. Their resonance light scattering intensities were peaked at the same λmax, ex/em = 551/553 nm without any background effect of both ionic strength and masking agent. Under optimal conditions, the linear range was 1.0-10.0 μg L-1 (R2 = 0.9899), limit of detection was 0.8 μg L-1 and limit of quantification was 1.5 μg L-1. The precision, expressed as the relative standard deviations, for intra-day and inter-day analyses was 0.87% and 4.47%, respectively. The recovery study of Pb2+ for real water samples was ranged between 80.8% and 109.5%. The proposed method was also proved with certified water sample containing 60 μg L-1 Pb2+ giving an excellent accuracy and was then implied satisfactorily for ultra-trace determination of Pb2+ in drinking water and tap water samples.
Collapse
Affiliation(s)
- Chayanee Kaewprom
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Phitchan Sricharoen
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nunticha Limchoowong
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Prawit Nuengmatcha
- Nanomaterials Chemistry Research Unit, Department of Chemistry, Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat 80280, Thailand
| | - Saksit Chanthai
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
18
|
Abukhadra MR, Dardir FM, Shaban M, Ahmed EA, Soliman MF. Superior removal of Co 2+, Cu 2+ and Zn 2+ contaminants from water utilizing spongy Ni/Fe carbonate-fluorapatite; preparation, application and mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:358-368. [PMID: 29631091 DOI: 10.1016/j.ecoenv.2018.03.085] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Spongy Ni/Fe carbonate - fluorapatite was synthesized from natural phosphorite enriched with iron impurities. The morphological, chemical and structural features of the product were estimated using several techniques as XRD, SEM, EDX, and FT-IR. It exhibits spongy structure of nano and micro-pores. The average crystallite size is about 8.27 nm. The suitability of the product for considerable decontamination of Zn2+, Co2+, and Cu2+, ions from water was studied based on several reacting parameters. The equilibrium was attained after 240 min for Zn2+ and Co2+ ions while the adsorption equilibrium of Cu2+ reached after 120 min. The adsorption data for the selected metals was represented well by a pseudo-second-order model which revealed chemisorption uptake. The equilibrium studies were appraised based on traditional models and two advanced models were designed according to the statistical physical theories. The adsorption results highly fitted with Langmuir model followed rather than the other models. This indicated a monolayer adsorption for the metal ions by spongy Ni/Fe carbonate - fluorapatite. The estimated qmax values are 149.25 mg/g, 106.4 mg/g and 147.5 mg/g for the uptake of Zn2+, Co2+, and Cu2+, respectively. Based on monolayer models of one energy and two energies, the number of receptor adsorption sites, number of adsorbed metal ions per active site, the average number of sites which occupied by ions, mono layer adsorption quantity and the adsorption quantity after total saturation were calculated for the first time for such materials.
Collapse
Affiliation(s)
- Mostafa R Abukhadra
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| | - Fatma M Dardir
- Geology Department, Faculty of Science, Assiut University, Egypt
| | - Mohamed Shaban
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ezzat A Ahmed
- Geology Department, Faculty of Science, Assiut University, Egypt
| | | |
Collapse
|
19
|
Kailasa SK, Koduru JR, Desai ML, Park TJ, Singhal RK, Basu H. Recent progress on surface chemistry of plasmonic metal nanoparticles for colorimetric assay of drugs in pharmaceutical and biological samples. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.05.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
20
|
An electrochemical biosensor for the detection of Pb 2+ based on G-quadruplex DNA and gold nanoparticles. Anal Bioanal Chem 2018; 410:5879-5887. [PMID: 29959487 DOI: 10.1007/s00216-018-1204-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/08/2018] [Accepted: 06/15/2018] [Indexed: 10/28/2022]
Abstract
We present a novel simple strategy for the detection of Pb2+ based on G-quadruplex DNA and gold nanoparticles. First, gold nanoparticles were chemically adsorbed onto the surface of a thiol-modified gold electrode. Subsequently, the substrate DNA1 was adsorbed onto the surfaces of the gold nanoparticles via thiol-gold bonds, so that the complementary guanine-rich DNA2 could be hybridized to the gold electrode in sequence. [Ru(NH3)6]3+ (RuHex), which can be electrostatically adsorbed onto the anionic phosphate of DNA, served as an electrochemical probe. The presence of Pb2+ can induce DNA2 to form a stable G-quadruplex and fall off the gold electrode. The amount of RuHex remaining on the electrode surface was determined by electrochemical chronocoulometry (CC). The prepared biosensor showed high sensitivity for Pb2+ with a linear range with respect to ln(cPb2+) from 0.01 to 200 nM and a low detection limit of 0.0042 nM under optimal conditions. Because of the high selectivity of the Pb2+-specific DNA2, the designed biosensor also showed low false-positive signal rates with other metal ions in real-world examples. Therefore, this strategy has the potential for practical application in environmental monitoring. Graphical abstract ᅟ.
Collapse
|
21
|
“Gold rush” in modern science: Fabrication strategies and typical advanced applications of gold nanoparticles in sensing. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.01.006] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
22
|
Qian Y, Zhang Z, Tian W, Wen L, Jiang L. A Pb2+ ionic gate with enhanced stability and improved sensitivity based on a 4′-aminobenzo-18-crown-6 modified funnel-shaped nanochannel. Faraday Discuss 2018; 210:101-111. [DOI: 10.1039/c8fd00025e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An ionic gate for sensing Pb2+ based on an emerging advanced funnel-shaped nanochannel system is reported, with enhanced stability and improved sensitivity.
Collapse
Affiliation(s)
- Yongchao Qian
- Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education
- Shanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
| | - Zhen Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Green Printing
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Wei Tian
- Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education
- Shanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
| | - Liping Wen
- Key Laboratory of Bio-inspired Materials and Interfacial Science
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| |
Collapse
|
23
|
Shaban M, Abukhadra MR, Khan AAP, Jibali BM. Removal of Congo red, methylene blue and Cr(VI) ions from water using natural serpentine. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2017.10.023] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Xiao Y, Xue Y, Gao F, Mosa A. Sorption of heavy metal ions onto crayfish shell biochar: Effect of pyrolysis temperature, pH and ionic strength. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.08.035] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
A turn-on fluorescent nanoprobe for lead(II) based on the aggregation of weakly associated gold(I)-glutathione nanoparticles. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2406-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Zhan F, Liao X, Gao F, Qiu W, Wang Q. Electroactive crown ester-Cu 2+ complex with in-situ modification at molecular beacon probe serving as a facile electrochemical DNA biosensor for the detection of CaMV 35s. Biosens Bioelectron 2017; 92:589-595. [PMID: 27829553 DOI: 10.1016/j.bios.2016.10.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/10/2016] [Accepted: 10/19/2016] [Indexed: 01/01/2023]
Abstract
A novel electrochemical DNA biosensor has been facilely constructed by in-situ assembly of electroactive 4'-aminobenzo-18-crown-6-copper(II) complex (AbC-Cu2+) on the free terminal of the hairpin-structured molecule beacon. The 3'-SH modified molecule beacon probe was first immobilized on the gold electrode (AuE) surface through self-assembly chemistry of Au-S bond. Then the crow ester of AbC was covalently coupled with 5'-COOH on the molecule beacon, and served as a platform to attach the Cu2+ by coordination with ether bond (-O-) of the crown cycle. Thus, an electroactive molecule beacon-based biosensing interface was constructed. In comparison with conventional methods for preparation of electroactive molecule beacon, the approach presented in this work is much simpler, reagent- and labor-saving. Selectivity study shows that the in-situ fabricated electroactive molecule beacon remains excellent recognition ability of pristine molecule beacon probe to well differentiate various DNA fragments. The target DNA can be quantatively determined over the range from 0.10pM to 0.50nM. The detection limit of 0.060pM was estimated based on signal-to-noise ratio of 3. When the biosensor was applied for the detection cauliflower mosaic virus 35s (CaMV 35s) in soybean extraction samples, satisfactory results are achieved. This work opens a new strategy for facilely fabricating electrochemical sensing interface, which also shows great potential in aptasensor and immurosensor fabrication.
Collapse
Affiliation(s)
- Fengping Zhan
- College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Xiaolei Liao
- College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Feng Gao
- College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Weiwei Qiu
- College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Qingxiang Wang
- College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China.
| |
Collapse
|
27
|
Drozd M, Pietrzak M, Kalinowska D, Grabowska-Jadach I, Malinowska E. Glucose dithiocarbamate derivatives as capping ligands of water-soluble CdSeS/ZnS quantum dots. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.09.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Rawat KA, Kailasa SK. 2,3,4-Trihydroxy benzophenone as a novel reducing agent for one-step synthesis of size-optimized gold nanoparticles and their application in colorimetric sensing of adenine at nanomolar concentration. RSC Adv 2016. [DOI: 10.1039/c5ra21634f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
2,3,4-trihydroxy benzophenone acts as a novel reducing and stabilizing agent for one-step synthesis of size-optimized Au NPs and used as a probe for colorimetric sensing of adenine.
Collapse
Affiliation(s)
- Karuna A. Rawat
- Department of Applied Chemistry
- S. V. National Institute of Technology
- Surat-395007
- India
| | - Suresh Kumar Kailasa
- Department of Applied Chemistry
- S. V. National Institute of Technology
- Surat-395007
- India
| |
Collapse
|
29
|
Glutathione-modified ultrasmall Ce3+and Tb3+-doped SrF2 nanocrystals for fluorescent determination of Hg(II) and Pb(II) ions. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1610-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
30
|
Rawat KA, Basu H, Singhal RK, Kailasa SK. Simultaneous colorimetric detection of four drugs in their pharmaceutical formulations using unmodified gold nanoparticles as a probe. RSC Adv 2015. [DOI: 10.1039/c4ra16109b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic representation for the aggregation of unmodified Au NPs induced by four drugs (venlafaxine, imipramine, amlodipine, and alfuzosin).
Collapse
Affiliation(s)
- Karuna A. Rawat
- Department of Applied Chemistry
- S. V. National Institute of Technology
- Surat-395007
- India
| | - Hirakendu Basu
- Analytical Chemistry Division
- Bhabha Atomic Research Center
- Mumbai 400085
- India
| | | | - Suresh Kumar Kailasa
- Department of Applied Chemistry
- S. V. National Institute of Technology
- Surat-395007
- India
| |
Collapse
|
31
|
Mehta VN, Kailasa SK. Malonamide dithiocarbamate functionalized gold nanoparticles for colorimetric sensing of Cu2+ and Hg2+ ions. RSC Adv 2015. [DOI: 10.1039/c4ra11640b] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, a colorimetric probe was developed based on malonamide dithiocarbamate functionalized gold nanoparticles (MA–DTC–Au NPs) for the simultaneous colorimetric detection of Cu2+ and Hg2+ ions.
Collapse
|