1
|
Cao X, Chen C, Zhu Q. Biosensors based on functional nucleic acids and isothermal amplification techniques. Talanta 2023; 253:123977. [PMID: 36201957 DOI: 10.1016/j.talanta.2022.123977] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 12/13/2022]
Abstract
In the past few years, with the in-depth research of functional nucleic acids and isothermal amplification techniques, their applications in the field of biosensing have attracted great interest. Since functional nucleic acids have excellent flexibility and convenience in their structural design, they have significant advantages as recognition elements in biosensing. At the same time, isothermal amplification techniques have higher amplification efficiency, so the combination of functional nucleic acids and isothermal amplification techniques can greatly promote the widespread application of biosensors. For the purpose of further improving the performance of biosensors, this review introduces several widely used functional nucleic acids and isothermal amplification techniques, as well as their classification, basic principles, application characteristics, and summarizes their important applications in the field of biosensing. We hope to provide some references for the design and construction of new tactics to enhance the detection sensitivity and detection range of biosensing.
Collapse
Affiliation(s)
- Xiuen Cao
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
2
|
Nawaz N, Abu Bakar NK, Muhammad Ekramul Mahmud HN, Jamaludin NS. Molecularly imprinted polymers-based DNA biosensors. Anal Biochem 2021; 630:114328. [PMID: 34363786 DOI: 10.1016/j.ab.2021.114328] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 01/31/2023]
Abstract
In multiple biological processes, molecular recognition performs an integral role in detecting bio analytes. Molecular imprinted polymers (MIPs) are tailored sensing materials that can biomimic the biologic ligands and can detect specific target molecules selectively and sensitively. The formulation of molecularly imprinted polymers is followed by the formulation of a control termed as non-imprinted polymer (NIP), which, in the absence of a template, is commonly formulated to evaluate whether distinctive imprints have been produced for the template. Given the difficulties confronting bioanalytical researchers, it is inevitable that this strategy would come out as a central route of multidisciplinary studies to create extremely promising stable artificial receptors as a replacement or accelerate biological matrices. The ease of synthesis, low cost, capability to 'tailor' recognition element for analyte molecules, and stability under harsh environments make MIPs promising candidates as a recognition tool for biosensing. Compared to biological systems, molecular imprinting techniques have several advantages, including high recognition ability, long-term durability, low cost, and robustness, allowing molecularly imprinted polymers to be employed in drug delivery, biosensor technology, and nanotechnology. Molecular imprinted polymer-based sensors still have certain shortcomings in determining biomacromolecules (nucleic acid, protein, lipids, and carbohydrates), considering the vast volume of the latest literature on biomicromolecules. These potential materials are still required to address a few weaknesses until gaining their position in recognition of biomacromolecules. This review aims to highlight the current progress in molecularly imprinted polymers (MIPs)-based sensors for the determination of deoxyribonucleic acid (DNA) or nucleobases.
Collapse
Affiliation(s)
- Noman Nawaz
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, W.Persekutuan Kuala Lumpur, Malaysia.
| | - Nor Kartini Abu Bakar
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, W.Persekutuan Kuala Lumpur, Malaysia.
| | | | - Nazzatush Shimar Jamaludin
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, W.Persekutuan Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Xu M, Tang D. Recent advances in DNA walker machines and their applications coupled with signal amplification strategies: A critical review. Anal Chim Acta 2021; 1171:338523. [PMID: 34112433 DOI: 10.1016/j.aca.2021.338523] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023]
Abstract
DNA walkers, a type of dynamic nanomachines, have become the subject of burgeoning research in the field of biology. These walkers are powered by driving forces based on strand displacement reactions, protein enzyme/DNAzyme reactions and conformational transitions. With the unique properties of high directionality, flexibility and efficiency, DNA walkers move progressively and autonomously along multiple dimensional tracks, offering abundant and promising applications in biosensing, material assembly and synthesis, and early cancer diagnosis. Notably, DNA walkers identified as signal amplifiers can be combined with various amplification approaches to enhance signal transduction and amplify biosensor sensing signals. Herein, we systematically and comprehensively review the walking principles of various DNA walkers and the recent progress on multiple dimensional tracks by presenting representative examples and an insightful discussion. We also summarized and categorized the diverse signal amplification strategies with which DNA walkers have coupled. Finally, we outline the challenges and future trends of DNA walker machines in emerging analytical fields.
Collapse
Affiliation(s)
- Mingdi Xu
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108, People's Republic of China; Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.
| |
Collapse
|
4
|
Detection of nucleic acids and elimination of carryover contamination by using loop-mediated isothermal amplification and antarctic thermal sensitive uracil-DNA-glycosylase in a lateral flow biosensor: application to the detection of Streptococcus pneumoniae. Mikrochim Acta 2018; 185:212. [DOI: 10.1007/s00604-018-2723-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 02/02/2018] [Indexed: 12/13/2022]
|
5
|
Colorimetric detection of genetically modified organisms based on exonuclease III-assisted target recycling and hemin/G-quadruplex DNAzyme amplification. Mikrochim Acta 2017; 185:75. [PMID: 29594619 DOI: 10.1007/s00604-017-2618-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/15/2017] [Indexed: 01/16/2023]
Abstract
An isothermal colorimetric method is described for amplified detection of the CaMV 35S promoter sequence in genetically modified organism (GMO). It is based on (a) target DNA-triggered unlabeled molecular beacon (UMB) termini binding, and (b) exonuclease III (Exo III)-assisted target recycling, and (c) hemin/G-quadruplex (DNAzyme) based signal amplification. The specific binding of target to the G-quadruplex sequence-locked UMB triggers the digestion of Exo III. This, in turn, releases an active G-quadruplex segment and target DNA for successive hybridization and cleavage. The Exo III impellent recycling of targets produces numerous G-quadruplex sequences. These further associate with hemin to form DNAzymes and hence will catalyze H2O2-mediated oxidation of the chromogenic enzyme substrate ABTS2- causing the formation of a green colored product. This finding enables a sensitive colorimetric determination of GMO DNA (at an analytical wavelength of 420 nm) at concentrations as low as 0.23 nM. By taking advantage of isothermal incubation, this method does not require sophisticated equipment or complicated syntheses. Analyses can be performed within 90 min. The method also discriminates single base mismatches. In our perception, it has a wide scope in that it may be applied to the detection of many other GMOs. Graphical abstract An isothermal and sensitive colorimetric method is described for amplified detection of CaMV 35S promoter sequence in genetically modified organism (GMO). It is based on target DNA-triggered molecular beacon (UMB) termini-binding and exonuclease III assisted target recycling, and on hemin/G-quadruplex (DNAzyme) signal amplification.
Collapse
|
6
|
Fozooni T, Ravan H, Sasan H. Signal Amplification Technologies for the Detection of Nucleic Acids: from Cell-Free Analysis to Live-Cell Imaging. Appl Biochem Biotechnol 2017; 183:1224-1253. [DOI: 10.1007/s12010-017-2494-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 04/24/2017] [Indexed: 12/15/2022]
|
7
|
Colorimetric and visual determination of microRNA via cycling signal amplification using T7 exonuclease. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2238-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Zhou L, Wang J, Chen Z, Li J, Wang T, Zhang Z, Xie G. A universal electrochemical biosensor for the highly sensitive determination of microRNAs based on isothermal target recycling amplification and a DNA signal transducer triggered reaction. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2129-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Guo Y, Wang Y, Liu S, Yu J, Wang H, Liu X, Huang J. Simultaneous voltammetric determination of E. coli and S. typhimurium based on target recycling amplification using self-assembled hairpin probes on a gold electrode. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2017-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Fluorometric determination of Simian virus 40 based on strand displacement amplification and triplex DNA using a molecular beacon probe with a guanine-rich fragment of the stem region. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2041-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Li SK, Chen AY, Chai YQ, Yuan R, Zhuo Y. Electrochemiluminescence Aptasensor Based on Cascading Amplification of Nicking Endonuclease-Assisted Target Recycling and Rolling Circle Amplifications for Mucin 1 Detection. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.07.074] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Methyltransferase activity assay based on the use of exonuclease III, the hemin/G-quadruplex system and reduced graphene oxide on a gold electrode, and a study on enzyme inhibition. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1645-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
G-quadruplex − based homogenous fluorescence platform for ultrasensitive DNA detection through isothermal cycling and cascade signal amplification. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1608-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Chen W, Yan Y, Zhang Y, Zhang X, Yin Y, Ding S. DNA transducer-triggered signal switch for visual colorimetric bioanalysis. Sci Rep 2015; 5:11190. [PMID: 26060886 PMCID: PMC4462091 DOI: 10.1038/srep11190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/14/2015] [Indexed: 12/31/2022] Open
Abstract
A simple and versatile colorimetric biosensor has been developed for sensitive and specific detection of a wide range of biomolecules, such as oligonucleotides and aptamer-recognized targets. Combining the signal transducer and catalyzed hairpin assembly (CHA)-based signal amplification, the target DNA binds with the hairpin DNA to form a new nucleic acid sequence and creates a toehold in the transducer for initiating the recycle amplification reaction of CHA. The catalyzed assembly process produces a large amount of G-rich DNA. In the presence of hemin, the G-rich DNA forms G-quadruplex/hemin complex and mimic horseradish peroxidase activity, which catalyzes a colorimetric reaction. Under optimal conditions, the calibration curve of synthetic target DNA has good linearity from 50 pM to 200 nM with a detection limit of 32 pM. This strategy has been successfully applied to detect S. pneumoniae as low as 156 CFU mL(-1), and shows a good specificity against closely related streptococci and major pathogenic bacteria. In addition, the developed method enables successful visual analysis of S. pneumoniae in clinical samples by the naked eye. Importantly, this method demonstrates excellent assay versatility for sensitively detecting oligonucleotides or aptamer-recognized targets.
Collapse
Affiliation(s)
- Wenhong Chen
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders; Department of Clinical laboratory, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Yurong Yan
- 1] Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders; Department of Clinical laboratory, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China [2] Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Ye Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Xuemei Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Yibing Yin
- 1] Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders; Department of Clinical laboratory, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China [2] Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Shijia Ding
- 1] Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders; Department of Clinical laboratory, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China [2] Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| |
Collapse
|
15
|
Sun AL, Zhang YF, Wang XN. Sensitive voltammetric determination of DNA via a target-induced strand-displacement reaction using quantum dot-labeled probe DNA. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1467-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|