1
|
Sahragard A, Varanusupakul P, Miró M. Interfacing liquid-phase microextraction with electrochemical detection: A critical review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
Recent Developments in Voltammetric Analysis of Pharmaceuticals Using Disposable Pencil Graphite Electrodes. Processes (Basel) 2022. [DOI: 10.3390/pr10030472] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The even growing production of both well-known and new derivatives with pharmaceutical action involves the need for developing facile and reliable methods for the analysis of these compounds. Among the widely used instrumental techniques, the electrochemical ones are probably the simplest and the most rapid, also having good performance characteristics. However, the key tool in electroanalysis is the working electrode. Due to the inherent electrochemical and economic advantages of the pencil graphite electrode (PGE), the interest in its applicability in the analysis of different analytes has continuously increased in recent years. Thus, this paper aims to review the scientific reports published in the last 10 years on the use of the disposable eco- and user-friendly PGEs in the electroanalysis of compounds of pharmaceutical importance in different matrices. The PGE characteristics and designs (bare or modified with various types of materials), along with their applications and performance parameters (e.g., linear range, limit of detection, and reproducibility), will be discussed, and their advantages and limitations will be critically emphasized.
Collapse
|
3
|
Liu Y, Xu J, Han L, Liu Q, Yang Y, Li Z, Lu Z, Zhang H, Guo T, Liu Q. Ultra-Fast Computation of Excited-States Spectra for Large Systems: Ultraviolet and Fluorescence Spectra of Proteins. Interdiscip Sci 2020; 13:140-146. [PMID: 33185845 DOI: 10.1007/s12539-020-00402-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/04/2020] [Accepted: 10/29/2020] [Indexed: 11/26/2022]
Abstract
A workable approach named xTB-sTDDFT was selected to investigate the excited-state spectra of oxytocin (135 atoms), GHRP-6 (120 atoms) and insulin (793 atoms). Three different Hartree-Fock components functionals (wB97XD3: 51%, LC-BLYP: 53%, wB97X: 57%) were used to calculate the excitation spectra, and the results calculated by wB97XD3 functional well agree with the experiments. It's a deep impression that computed time cost reduced by more than 80%. For polypeptide (oxytocin and GHRP-6), both UV and fluorescence spectra were obtained, and the errors between the calculated and experimental values approximately were 20 nm. For Insulin, the errors are within 15 nm. UV spectrum peak is λcal = 262 nm (λexp = 277 nm, Δλ = 15 nm), and fluorescence spectrum peak is λcal = 294 nm (λexp = 304 nm, Δλ = 10 nm). In summary, a suitable theoretical model is established to ultra-fast calculate the electronic excitation spectra of large systems, such as proteins and biomacromolecules, with good calculation accuracy, fast calculation speed and low cost.
Collapse
Affiliation(s)
- Yonggang Liu
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621010, China.
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Jianjie Xu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Li Han
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 102205, China
| | - Qiangqiang Liu
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Yunfan Yang
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Zeren Li
- National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang, 621010, China
| | - Zhongyuan Lu
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Hang Zhang
- National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang, 621010, China
| | - Tengxiao Guo
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Qiao Liu
- National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang, 621010, China
| |
Collapse
|
4
|
High-performance flexible-film supercapacitors of layered hydrous RuO2/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) through vacuum filtration. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Cao Y, Yang X, Guo L, Zheng C, Wang D, Cai C, Liu S, Yao J. Effects of dietary leucine and phenylalanine on pancreas development, enzyme activity, and relative gene expression in milk-fed Holstein dairy calves. J Dairy Sci 2018; 101:4235-4244. [DOI: 10.3168/jds.2017-13987] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/04/2018] [Indexed: 12/18/2022]
|
6
|
Aptamer@Au-o-phenylenediamine modified pencil graphite electrode: A new selective electrochemical impedance biosensor for the determination of insulin. Colloids Surf B Biointerfaces 2017; 159:47-53. [DOI: 10.1016/j.colsurfb.2017.07.076] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/21/2017] [Accepted: 07/26/2017] [Indexed: 01/26/2023]
|
8
|
David IG, Popa DE, Buleandra M. Pencil Graphite Electrodes: A Versatile Tool in Electroanalysis. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:1905968. [PMID: 28255500 PMCID: PMC5307002 DOI: 10.1155/2017/1905968] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/19/2016] [Accepted: 01/04/2017] [Indexed: 05/05/2023]
Abstract
Due to their electrochemical and economical characteristics, pencil graphite electrodes (PGEs) gained in recent years a large applicability to the analysis of various types of inorganic and organic compounds from very different matrices. The electrode material of this type of working electrodes is constituted by the well-known and easy commercially available graphite pencil leads. Thus, PGEs are cheap and user-friendly and can be employed as disposable electrodes avoiding the time-consuming step of solid electrodes surface cleaning between measurements. When compared to other working electrodes PGEs present lower background currents, higher sensitivity, good reproducibility, and an adjustable electroactive surface area, permitting the analysis of low concentrations and small sample volumes without any deposition/preconcentration step. Therefore, this paper presents a detailed overview of the PGEs characteristics, designs and applications of bare, and electrochemically pretreated and chemically modified PGEs along with the corresponding performance characteristics like linear range and detection limit. Techniques used for bare or modified PGEs surface characterization are also reviewed.
Collapse
Affiliation(s)
- Iulia Gabriela David
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90–92, District 5, 050663 Bucharest, Romania
| | - Dana-Elena Popa
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90–92, District 5, 050663 Bucharest, Romania
| | - Mihaela Buleandra
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90–92, District 5, 050663 Bucharest, Romania
| |
Collapse
|
9
|
Cohen N, Sabhachandani P, Sarkar S, Kahanovitz L, Lautsch N, Russell SJ, Konry T. Microsphere based continuous-flow immunoassay in a microfluidic device for determination of clinically relevant insulin levels. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2072-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Development of a cleanup and electrochemical determination of flutamide using silica thin film pencil graphite electrode functionalized with thiol groups. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2016. [DOI: 10.1007/s13738-016-0885-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|