1
|
Rybak A, Rybak A, Boncel S, Kolanowska A, Jakóbik-Kolon A, Bok-Badura J, Kaszuwara W. Modern Rare Earth Imprinted Membranes for the Recovery of Rare Earth Metal Ions from Coal Fly Ash Extracts. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3087. [PMID: 38998170 PMCID: PMC11242257 DOI: 10.3390/ma17133087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024]
Abstract
The need to identify secondary sources of REEs and their recovery has led to the search for new methods and materials. In this study, a novel type of ion-imprinted adsorption membranes based on modified chitosan was synthesized. Their application for the recovery of chosen REEs from synthetic coal fly ash extracts was analyzed. The examined membranes were analyzed in terms of adsorption kinetics, isotherms, selectivity, reuse, and their separation abilities. The experimental data obtained were analyzed with two applications, namely, REE 2.0 and REE_isotherm. It was found that the adsorption of Nd3+ and Y3+ ions in the obtained membranes took place according to the chemisorption mechanism and was significantly controlled by film diffusion. The binding sites on the adsorbent surface were uniformly distributed; the examined ions showed the features of regular monolayer adsorption; and the adsorbents showed a strong affinity to the REE ions. The high values of Kd (900-1472.8 mL/g) demonstrate their high efficiency in the recovery of REEs. After five subsequent adsorption-desorption processes, approximately 85% of the value of one cycle was reached. The synthesized membranes showed a high rejection of the matrix components (Na, Mg, Ca, Al, Fe, and Si) in the extracts of the coal fly ashes, and the retention ratio for these Nd and Y ions was 90.11% and 80.95%, respectively.
Collapse
Affiliation(s)
- Aleksandra Rybak
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Aurelia Rybak
- Department of Electrical Engineering and Industrial Automation, Faculty of Mining, Safety Engineering and Industrial Automation, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Sławomir Boncel
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Anna Kolanowska
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, 40-007 Katowice, Poland
| | - Agata Jakóbik-Kolon
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Joanna Bok-Badura
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Waldemar Kaszuwara
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warszawa, Poland
| |
Collapse
|
2
|
Zareh M, Ahmed R, Saleem N, Abd-ElSattar A. Graphene oxide versus activated charcoal for La-electrochemical sensor. MATERIALS SCIENCE AND ENGINEERING: B 2023; 292:116389. [DOI: 10.1016/j.mseb.2023.116389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
3
|
Magnetic N-rich carbon nitride framework material for the high selectivity extraction and determination of La(III). Talanta 2021; 225:122086. [PMID: 33592797 DOI: 10.1016/j.talanta.2021.122086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 11/21/2022]
Abstract
A novel magnetic C3N5 framework material (Fe3O4/C3N5) was developed as a high selectivity extractant for La(III) determination in food samples. The Fe3O4/C3N5 material was synthesized by thermal deammoniation method and has larger surface area (100.3 m2 g-1) and more effective adsorption sites compared with that of individual C3N5 material (19.4 m2 g-1). It was proved that Fe3O4/C3N5 material displayed excellent selectivity and adsorption capacity for La(III). In addition, adsorption isotherm and kinetic data indicated that La(III) adsorption based on Fe3O4/C3N5 material is a monolayer adsorption which is compatible with Langmuir model and follows a pseudo-second-order kinetic equation. By using Fe3O4/C3N5 material as extractant, an analytical method was established with low limits of detection (3σ, n = 6) of 10.4 μg L-1, reasonable recoveries ranged from 86% to 106% and good precision with the RSD less than 10.7%. The analytical method was further applied to the determination of trace La(III) in food sample. It evinced that the concentration of La(III) in sea fish is 13.2 μg kg-1 and the content of 138La is 0.138 μg kg-1, which is 1.03% of total La(III).
Collapse
|
4
|
Kusumkar VV, Galamboš M, Viglašová E, Daňo M, Šmelková J. Ion-Imprinted Polymers: Synthesis, Characterization, and Adsorption of Radionuclides. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1083. [PMID: 33652580 PMCID: PMC7956459 DOI: 10.3390/ma14051083] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 12/21/2022]
Abstract
Growing concern over the hazardous effect of radionuclides on the environment is driving research on mitigation and deposition strategies for radioactive waste management. Currently, there are many techniques used for radionuclides separation from the environment such as ion exchange, solvent extraction, chemical precipitation and adsorption. Adsorbents are the leading area of research and many useful materials are being discovered in this category of radionuclide ion separation. The adsorption technologies lack the ability of selective removal of metal ions from solution. This drawback is eliminated by the use of ion-imprinted polymers, these materials having targeted binding sites for specific ions in the media. In this review article, we present recently published literature about the use of ion-imprinted polymers for the adsorption of 10 important hazardous radionuclides-U, Th, Cs, Sr, Ce, Tc, La, Cr, Ni, Co-found in the nuclear fuel cycle.
Collapse
Affiliation(s)
- Vipul Vilas Kusumkar
- Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina Ilkovicova 6, 842 15 Bratislava, Slovakia;
| | - Michal Galamboš
- Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina Ilkovicova 6, 842 15 Bratislava, Slovakia;
| | - Eva Viglašová
- Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina Ilkovicova 6, 842 15 Bratislava, Slovakia;
| | - Martin Daňo
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehová 7, 115 19 Prague, Czech Republic;
| | - Jana Šmelková
- Department of Administrative Law and Environmental Law, Faculty of Law, Comenius University in Bratislava, Safarikovo namestie 6, 810 00 Bratislava, Slovakia;
| |
Collapse
|
5
|
Li S, Li J, Ma X, Pang C, Yin G, Luo J. Molecularly imprinted electroluminescence switch sensor with a dual recognition effect for determination of ultra-trace levels of cobalt (II). Biosens Bioelectron 2019; 139:111321. [DOI: 10.1016/j.bios.2019.111321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/06/2019] [Accepted: 05/12/2019] [Indexed: 10/26/2022]
|
6
|
|
7
|
Ou X, He M, Chen B, Wang H, Hu B. Microfluidic array surface ion-imprinted monolithic capillary microextraction chip on-line hyphenated with ICP-MS for the high throughput analysis of gadolinium in human body fluids. Analyst 2019; 144:2736-2745. [DOI: 10.1039/c8an02057d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel method by hyphenating chip-based array ion-imprinted monolithic capillary microextraction with ICP-MS was proposed for the online analysis of trace Gd in biological samples.
Collapse
Affiliation(s)
- Xiaoxiao Ou
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- China
| | - Han Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- Department of Chemistry
- Wuhan University
- Wuhan 430072
- China
| |
Collapse
|
8
|
Płotka-Wasylka J, Marć M, Szczepańska N, Namieśnik J. New Polymeric Materials for Solid Phase Extraction. Crit Rev Anal Chem 2017; 47:373-383. [DOI: 10.1080/10408347.2017.1298987] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Mariusz Marć
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Natalia Szczepańska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
9
|
Bendiaf H, Abderrahim O, Villemin D, Didi MA. Studies on the feasibility of using a novel phosphonate resin for the separation of U(VI), La(III) and Pr(III) from aqueous solutions. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5244-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Fayazi M, Taher MA, Afzali D, Mostafavi A, Ghanei-Motlagh M. Synthesis and application of novel ion-imprinted polymer coated magnetic multi-walled carbon nanotubes for selective solid phase extraction of lead(II) ions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 60:365-373. [DOI: 10.1016/j.msec.2015.11.060] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/14/2015] [Accepted: 11/23/2015] [Indexed: 11/27/2022]
|