1
|
Qin D, Gong Q, Li X, Gao Y, Gopinath SCB, Chen Y, Yang Z. Identification of Mycoplasma pneumoniae by DNA-modified Gold Nanomaterials in a Colorimetric Assay. Biotechnol Appl Biochem 2022; 70:553-559. [PMID: 35725894 DOI: 10.1002/bab.2377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/16/2022] [Indexed: 11/12/2022]
Abstract
Mycoplasma pneumoniae (M. pneumoniae) is a highly infectious bacterium and the major cause of pneumonia, especially in school children. Mycoplasma pneumoniae affects the respiratory tract, and 25% of patients experience health-related problems. It is important to have a suitable method to detect M. pneumoniae, and gold nanoparticle (GNP)-based colorimetric biosensing was used in this study to identify the specific target DNA for M. pneumoniae. The color of GNPs changes due to negatively charged GNPs in the presence of positively charged monovalent (Na+ ) ions from NaCl. This condition is reversed in the presence of a single-stranded oligonucleotide, as it attracts GNPs, but not in the presence of double-stranded DNA. Single standard capture DNA was mixed with optimal target DNA that cannot be adsorbed by GNPs; under this condition, GNPs are not stabilized and aggregate at high ionic strength (from 100 mM). Without capture DNA, the GNPs were stabilized by capture DNA (from 1 μM), becoming more stable under high ionic conditions and retaining their red color. The GNPs turned blue in the presence of target DNA at concentrations of 1 pM, and the GNPs retained a red color when there was no target in the solution. This method is useful for the simple, easy, and accurate identification of M. pneumoniae target DNA at higher discrimination and without involving sophisticated equipment, and this method provides a diagnostic for M. pneumoniae. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dapeng Qin
- Department of Inspection, Taiyuan Iron and Steel (Group) Co., Ltd. General Hospital, Taiyuan, Shanxi Province, 030003, China
| | - Qiuping Gong
- Department of Nuclear Medicine, Taiyuan People's Hospital, Taiyuan, Shanxi Province, 030000, China
| | - Xin Li
- Division of Radiological Health, Taiyuan Iron and Steel (Group) Co., Ltd. General Hospital, Taiyuan, Shanxi Province, 030003, China
| | - Yanping Gao
- Department of Quality Control, Taiyuan Iron and Steel (Group) Co., Ltd. General Hospital, Taiyuan, Shanxi Province, 030003, China
| | - Subash C B Gopinath
- Faculty of Chemical Engineering Technology.,Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia.,Centre of Excellence for Nanobiotechnology and Nanomedicine (CoExNano), Faculty of Applied Sciences, AIMST University, Semeling, Kedah, 08100, Malaysia
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Zehua Yang
- Department of Inspection, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030000, China
| |
Collapse
|
2
|
Mobed A, Malehmir S, Ahmad Alipour A, Azizimoghaddam Y, Sarabi HS, Ghazi F. Biosensors, modern technology for the detection of cancer-associated bacteria. Biotechnol Lett 2022; 44:683-701. [PMID: 35543825 DOI: 10.1007/s10529-022-03257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/30/2022] [Indexed: 11/02/2022]
Abstract
Cancer is undoubtedly one of the major human challenges worldwide. A number of pathogenic bacteria are deemed to be potentially associated with the disease. Accordingly, accurate and specific identification of cancer-associated bacteria can play an important role in cancer control and prevention. A variety of conventional methods such as culture, serology, and molecular-based methods as well as PCR and real-time PCR have been adopted to identify bacteria. However, supply costs, machinery fees, training expenses, consuming time, and the need for advanced equipment are the main problems with the old methods. As a result, advanced and modern techniques are being developed to overcome the disadvantages of conventional methods. Biosensor technology is one of the innovative methods that has been the focus of researchers due to its numerous advantages. The main purpose of this study is to provide an overview of the latest developed biosensors for recognizing the paramount cancer-associated bacteria.
Collapse
Affiliation(s)
- Ahmad Mobed
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center of Psychiatry and Behavioral Science, Tabriz University of Medical Sciences, Tabriz, Iran.
- Islamic Azad University of Pharmaceutical Sciences Branch, Tehran, Iran.
| | - Shirin Malehmir
- Karaj Branch, Molecular Biology Research Center, Islamic Azad University, Tehran, Iran
- Research Institute for Gastroenterology and Liver Diseases, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ahmad Alipour
- Research Center of Psychiatry and Behavioral Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yasaman Azizimoghaddam
- Karaj Branch, Molecular Biology Research Center, Islamic Azad University, Tehran, Iran
- Research Institute for Gastroenterology and Liver Diseases, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
- Islamic Azad University of Pharmaceutical Sciences Branch, Tehran, Iran
| | - Hediyeh Saghi Sarabi
- Karaj Branch, Molecular Biology Research Center, Islamic Azad University, Tehran, Iran
- Research Institute for Gastroenterology and Liver Diseases, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
- Islamic Azad University of Pharmaceutical Sciences Branch, Tehran, Iran
| | - Farhood Ghazi
- Islamic Azad University of Pharmaceutical Sciences Branch, Tehran, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, 5154853431, Iran
| |
Collapse
|
3
|
Mobed A, Hasanzadeh M. Sensitive recognition of Shiga toxin using biosensor technology: An efficient platform towards bioanalysis of pathogenic bacterial. Microchem J 2022; 172:106900. [DOI: 10.1016/j.microc.2021.106900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Zhang G, Zeng H, Liu J, Nagashima K, Takahashi T, Hosomi T, Tanaka W, Yanagida T. Nanowire-based sensor electronics for chemical and biological applications. Analyst 2021; 146:6684-6725. [PMID: 34667998 DOI: 10.1039/d1an01096d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Detection and recognition of chemical and biological species via sensor electronics are important not only for various sensing applications but also for fundamental scientific understanding. In the past two decades, sensor devices using one-dimensional (1D) nanowires have emerged as promising and powerful platforms for electrical detection of chemical species and biologically relevant molecules due to their superior sensing performance, long-term stability, and ultra-low power consumption. This paper presents a comprehensive overview of the recent progress and achievements in 1D nanowire synthesis, working principles of nanowire-based sensors, and the applications of nanowire-based sensor electronics in chemical and biological analytes detection and recognition. In addition, some critical issues that hinder the practical applications of 1D nanowire-based sensor electronics, including device reproducibility and selectivity, stability, and power consumption, will be highlighted. Finally, challenges, perspectives, and opportunities for developing advanced and innovative nanowire-based sensor electronics in chemical and biological applications are featured.
Collapse
Affiliation(s)
- Guozhu Zhang
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Hao Zeng
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Jiangyang Liu
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Kazuki Nagashima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Tsunaki Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Wataru Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| |
Collapse
|
5
|
Ma J, Du M, Wang C, Xie X, Wang H, Zhang Q. Advances in airborne microorganisms detection using biosensors: A critical review. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2021; 15:47. [PMID: 33842019 PMCID: PMC8023783 DOI: 10.1007/s11783-021-1420-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/08/2021] [Accepted: 02/22/2021] [Indexed: 05/05/2023]
Abstract
Humanity has been facing the threat of a variety of infectious diseases. Airborne microorganisms can cause airborne infectious diseases, which spread rapidly and extensively, causing huge losses to human society on a global scale. In recent years, the detection technology for airborne microorganisms has developed rapidly; it can be roughly divided into biochemical, immune, and molecular technologies. However, these technologies still have some shortcomings; they are time-consuming and have low sensitivity and poor stability. Most of them need to be used in the ideal environment of a laboratory, which limits their applications. A biosensor is a device that converts biological signals into detectable signals. As an interdisciplinary field, biosensors have successfully introduced a variety of technologies for bio-detection. Given their fast analysis speed, high sensitivity, good portability, strong specificity, and low cost, biosensors have been widely used in environmental monitoring, medical research, food and agricultural safety, military medicine and other fields. In recent years, the performance of biosensors has greatly improved, becoming a promising technology for airborne microorganism detection. This review introduces the detection principle of biosensors from the three aspects of component identification, energy conversion principle, and signal amplification. It also summarizes its research and application in airborne microorganism detection. The new progress and future development trend of the biosensor detection of airborne microorganisms are analyzed.
Collapse
Affiliation(s)
- Jinbiao Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 China
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, Tianjin, 300072 China
| | - Manman Du
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 China
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, Tianjin, 300072 China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 China
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, Tianjin, 300072 China
| | - Xinwu Xie
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, 300161 China
- National Bio-Protection Engineering Center, Tianjin, 300161 China
| | - Hao Wang
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, 300161 China
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin, 300222 China
| | - Qian Zhang
- School of Mechanical Engineering and Safety Engineering, Institute of Particle Technology, University of Wuppertal, Wuppertal, D-42119 Germany
| |
Collapse
|
6
|
Ziegler JM, Andoni I, Choi EJ, Fang L, Flores-Zuleta H, Humphrey NJ, Kim DH, Shin J, Youn H, Penner RM. Sensors Based Upon Nanowires, Nanotubes, and Nanoribbons: 2016-2020. Anal Chem 2020; 93:124-166. [PMID: 33242951 DOI: 10.1021/acs.analchem.0c04476] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Joshua M Ziegler
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Ilektra Andoni
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Eric J Choi
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Lu Fang
- Department of Automation, Hangzhou Dianzi University, 1158 Second Street, Xiasha, Hangzhou 310018, China
| | - Heriberto Flores-Zuleta
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Nicholas J Humphrey
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Dong-Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu Suwon, Gyeonggi-do 16419, South Korea
| | - Jihoon Shin
- School of Chemical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu Suwon, Gyeonggi-do 16419, South Korea
| | - Hyunho Youn
- School of Chemical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu Suwon, Gyeonggi-do 16419, South Korea
| | - Reginald M Penner
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
7
|
Mobed A, Baradaran B, Guardia MDL, Agazadeh M, Hasanzadeh M, Rezaee MA, Mosafer J, Mokhtarzadeh A, Hamblin MR. Advances in detection of fastidious bacteria: From microscopic observation to molecular biosensors. Trends Analyt Chem 2019; 113:157-171. [DOI: 10.1016/j.trac.2019.02.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Amperometric DNA biosensor for Mycobacterium tuberculosis detection using flower-like carbon nanotubes-polyaniline nanohybrid and enzyme-assisted signal amplification strategy. Biosens Bioelectron 2018; 119:215-220. [DOI: 10.1016/j.bios.2018.08.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/02/2018] [Accepted: 08/10/2018] [Indexed: 01/08/2023]
|
9
|
Ran P, Zhu S, Song J, Wu J, Mo F, Fu Y. A widened emission window of the peroxydisulfate-oxygen system for the detection of L-alanine. Colloids Surf B Biointerfaces 2018; 169:418-421. [PMID: 29807340 DOI: 10.1016/j.colsurfb.2018.05.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/12/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022]
Abstract
Peroxydisulfate-oxygen (S2O82--O2) system has become one of the most used systems in electrogenerated chemiluminscence (ECL) field. Due to S2O82- can be used as Fenton Reagent, this work designed an ECL biosensor based on the S2O82--O2 system for the detection of L-alanine in a widened emission window and using hemin/G-quadruplex and platinum and palladium nanowires (Pt-Pd NWs) to in situ generate O2 to amplify the ECL intensity. The proposed ECL sensor showed an excellent analytical property for the detection of L-alanine in a linear range of 5.0 × 10-3 M to 1.0 × 10-8 M with the detection limit of 3.3 × 10-9 M (S/N = 3). This work with high selectivity, stability and reproducibility may open a new door to apply S2O82- in ECL field.
Collapse
Affiliation(s)
- Peiyao Ran
- Key Laboratory on Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Shu Zhu
- Key Laboratory on Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jinyi Song
- Key Laboratory on Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jingling Wu
- Key Laboratory on Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Fangjing Mo
- Key Laboratory on Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yingzi Fu
- Key Laboratory on Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
10
|
Chen J, Yu C, Gao R, Geng Y, Zhao Y, Niu Y, Zhang L, Yu Y, He J. A palladium-platinum bimetal nanodendritic melamine network for signal amplification in voltammetric sensing of DNA. Mikrochim Acta 2018; 185:138. [PMID: 29594436 DOI: 10.1007/s00604-018-2690-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/18/2018] [Indexed: 01/05/2023]
Abstract
A sandwich-type electrochemical DNA sensor is described for the detection of oligonucleotides typical for MECP2 gene mutations. Palladium nanoparticles (PdNPs) and platinum nanoparticles (PtNPs) were used to synthesize flower-like PdPt nanodendrites (NDs) by a one-pot method. The PdPt NDs possess a high specific surface area and excellent catalytic capabilities. They served as the carrier for the signal DNA probe (SP) and simultaneously catalyze the reduction of hydrogen peroxide (H2O2). The PdPt NDs were modified with melamine, and this results in the formation of a PdPt-melamine network through stable interactions between the PdPt NDs and the three amino groups of each melamine molecule. The network exhibits excellent catalytic ability in enhancing the current signal response in the voltammetric detection of MECP2 gene mutation, best measured at -0.4 V vs. SCE and using H2O2 as the electrochemical probe. In addition, gold nanoflowers were electrodeposited on the electrode interface in order to accelerate electron transfer and to capture the capture probe. The sensor is stable and can detect MECP2 gene mutations in the 1 fmol·L-1 to 1 nmol·L-1 concentration range, with a 0.33 fmol·L-1 lower detection limit at an S/N ratio of 3. Graphical abstract Schematic presentation of electrodes for the determination of the X-linked gene methyl-CpG-binding protein 2 (MECP2). The sensor is based on the electrooxidation of added H2O2 by using the melamine modified palladium platinum bimetal nanodendrites as network signal amplification strategy. This versatile platform expands studies on the detection of monogenic disease.
Collapse
Affiliation(s)
- Jun Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197#, No.1, Yi Xue Yuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197#, No.1, Yi Xue Yuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Yanqing Geng
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197#, No.1, Yi Xue Yuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Yilin Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yazhen Niu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lei Zhang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197#, No.1, Yi Xue Yuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Yujie Yu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197#, No.1, Yi Xue Yuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197#, No.1, Yi Xue Yuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
11
|
Amperometric biosensor for 5-hydroxymethylcytosine based on enzymatic catalysis and using spherical poly(acrylic acid) brushes. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2401-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Guo Y, Wang Y, Liu S, Yu J, Wang H, Liu X, Huang J. Simultaneous voltammetric determination of E. coli and S. typhimurium based on target recycling amplification using self-assembled hairpin probes on a gold electrode. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2017-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Electrochemical gene sensor based on a glassy carbon electrode modified with hemin-functionalized reduced graphene oxide and gold nanoparticle-immobilized probe DNA. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1999-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Nanogapped impedimetric immunosensor for the detection of 16 kDa heat shock protein against Mycobacterium tuberculosis. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1911-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Label-free electrochemical genosensor based on mesoporous silica thin film. Anal Bioanal Chem 2016; 408:7321-7. [PMID: 27236313 DOI: 10.1007/s00216-016-9608-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 12/21/2022]
Abstract
A novel label-free electrochemical strategy for nucleic acid detection was developed by using gold electrodes coated with mesoporous silica thin films as sensing interface. The biosensing approach relies on the covalent attachment of a capture DNA probe on the surface of the silica nanopores and further hybridization with its complementary target oligonucleotide sequence, causing a diffusion hindering of an Fe(CN)6 (3-/4-) electrochemical probe through the nanochannels of the mesoporous film. This DNA-mesoporous silica thin film-modified electrodes allowed sensitive (91.7 A/M) and rapid (45 min) detection of low nanomolar levels of synthetic target DNA (25 fmol) and were successfully employed to quantify the endogenous content of Escherichia coli 16S ribosomal RNA (rRNA) directly in raw bacterial lysate samples without isolation or purification steps. Moreover, the 1-month stability demonstrated by these biosensing devices enables their advanced preparation and storage, as desired for practical real-life applications. Graphical abstract Mesoporous silica thin films as scaffolds for the development of novel label-free electrochemical genosensors to perform selective, sensitive and rapid detection of target oligonucleotide sequences. Application towards E. coli determination.
Collapse
|
16
|
Electrochemical immunoassay for the cancer marker LMP-1 (Epstein-Barr virus-derived latent membrane protein 1) using a glassy carbon electrode modified with Pd@Pt nanoparticles and a nanocomposite consisting of graphene sheets and MWCNTs. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1848-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Fu HJ, Wang Y, Dong XX, Liu YX, Chen ZJ, Shen YD, Yang C, Dong JX, Xu ZL. Application of nickel cobalt oxide nanoflakes for electrochemical sensing of estriol in milk. RSC Adv 2016. [DOI: 10.1039/c6ra09186e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, a nickel cobalt oxide (Ni/Co oxide) nanoflake based electrochemical sensor for the fast determination of estriol in milk is presented for the first time.
Collapse
Affiliation(s)
- Hui-Jun Fu
- Guangdong Provincial Key Laboratory of Food Quality and Safety
- South China Agricultural University
- Guangzhou 510642
- China
| | - Yu Wang
- Guangzhou Institute for Food Control
- Guangzhou 510410
- China
| | - Xiu-Xiu Dong
- Guangdong Provincial Key Laboratory of Food Quality and Safety
- South China Agricultural University
- Guangzhou 510642
- China
| | - Yi-Xin Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety
- South China Agricultural University
- Guangzhou 510642
- China
| | - Zi-Jian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety
- South China Agricultural University
- Guangzhou 510642
- China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety
- South China Agricultural University
- Guangzhou 510642
- China
| | - Chi Yang
- Department of Pharmacy
- Nantong University
- Nantong 226001
- China
| | - Jie-Xian Dong
- Department of Entomology and UCD Comprehensive Cancer Center
- University of California
- Davis
- USA
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety
- South China Agricultural University
- Guangzhou 510642
- China
| |
Collapse
|