1
|
Shoyiga HO, Fayemi OE. Conductive polymers and derivatives as recognition element for electrochemical sensing of food and drug additives: A brief perspective. Heliyon 2025; 11:e41575. [PMID: 39897782 PMCID: PMC11786671 DOI: 10.1016/j.heliyon.2024.e41575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Conducting polymers (CPs) are a distinct category of polymeric materials characterised by conjugated main chains that display adjustable electrical and optical properties. By regulating their doping states, these characteristics can be enhanced for many applications. CPs have demonstrated stability in aquatic conditions, rendering them suitable as electroactive and recognition elements in chemointerfaces and as electrode materials, particularly in water-based systems. This paper examines the use of CPs and CP-based nanocomposites in electrochemical sensors, specifically their application in identifying contaminants in food and pharmaceuticals. This research offers a thorough examination of the mechanics underlying CP-based electrochemical sensors, elucidating the origin of their detecting abilities and the characteristics that render them suitable for various applications. It encompasses the theoretical understanding foundation of electrochemical sensing, providing insights into the principal frameworks and prevalent conducting polymers and their derivatives utilised in sensor development. Alongside the concepts of electrochemical sensing, we examine diverse electroanalytical techniques, including chronoamperometry, cyclic voltammetry, electrochemical impedance spectroscopy, and differential pulse voltammetry, which are presented in a tabular format. These techniques are extensively employed for the detection and quantification of pharmaceuticals and food adulterants. We briefly highlight CP-based nanocomposites that improve sensitivity and reduce detection limits of these sensors, with this information compiled in a comprehensive table. In summary, electrodes constructed from CP-based nanocomposites typically exceed the performance of those built from pristine CPs. Nevertheless, additional systematic research is required to enhance the comprehension of the design and optimisation of nanocomposite-based electrodes for more effective sensing performance.
Collapse
Affiliation(s)
- Hassan O. Shoyiga
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University(Mafikeng Campus), Private Bag X2046, Mmabatho, 2735, South Africa
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, 2735, South Africa
| | - Omolola E. Fayemi
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University(Mafikeng Campus), Private Bag X2046, Mmabatho, 2735, South Africa
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, 2735, South Africa
| |
Collapse
|
2
|
Theansun W, Sriprachuabwong C, Chuenchom L, Prajongtat P, Techasakul S, Tuantranont A, Dechtrirat D. Acetylcholinesterase modified inkjet-printed graphene/gold nanoparticle/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid electrode for ultrasensitive chlorpyrifos detection. Bioelectrochemistry 2023; 149:108305. [DOI: 10.1016/j.bioelechem.2022.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 12/05/2022]
|
3
|
Mohammadpour-Haratbar A, Boraei SBA, Zare Y, Rhee KY, Park SJ. Graphene-Based Electrochemical Biosensors for Breast Cancer Detection. BIOSENSORS 2023; 13:bios13010080. [PMID: 36671915 PMCID: PMC9855997 DOI: 10.3390/bios13010080] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 06/04/2023]
Abstract
Breast cancer (BC) is the most common cancer in women, which is also the second most public cancer worldwide. When detected early, BC can be treated more easily and prevented from spreading beyond the breast. In recent years, various BC biosensor strategies have been studied, including optical, electrical, electrochemical, and mechanical biosensors. In particular, the high sensitivity and short detection time of electrochemical biosensors make them suitable for the recognition of BC biomarkers. Moreover, the sensitivity of the electrochemical biosensor can be increased by incorporating nanomaterials. In this respect, the outstanding mechanical and electrical performances of graphene have led to an increasingly intense study of graphene-based materials for BC electrochemical biosensors. Hence, the present review examines the latest advances in graphene-based electrochemical biosensors for BC biosensing. For each biosensor, the detection limit (LOD), linear range (LR), and diagnosis technique are analyzed. This is followed by a discussion of the prospects and current challenges, along with potential strategies for enhancing the performance of electrochemical biosensors.
Collapse
Affiliation(s)
- Ali Mohammadpour-Haratbar
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1715424313, Iran
| | - Seyyed Behnam Abdollahi Boraei
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1715424313, Iran
| | - Yasser Zare
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1715424313, Iran
| | - Kyong Yop Rhee
- Department of Mechanical Engineering (BK21 Four), College of Engineering, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
4
|
Zhang W, Li X, Hu X, Li C, Liu S, Ma J, Wang J, Li R, Wang Q, Ding X, Wang Z. A novel electrochemical sensor based on an Fe–N–C/AuNP nanohybrid for rapid and sensitive gallic acid detection. NEW J CHEM 2023. [DOI: 10.1039/d3nj00345k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
An Fe–N–C/AuNP nanohybrid was combined with a glassy carbon electrode to construct a novel electrochemical sensor for rapid detection of gallic acid (GA). The sensor exhibited excellent performance to detect GA with a wide linear response range and low detection limit.
Collapse
Affiliation(s)
- Wanqing Zhang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xijiao Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xinxin Hu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Chunxiang Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Shanqin Liu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Jingjing Ma
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Jichao Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Renlong Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Qing Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xiaoman Ding
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Zhiyuan Wang
- China Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Enzyme Immobilized Nanomaterials: An Electrochemical Bio-Sensing and Biocatalytic Degradation Properties Toward Organic Pollutants. Top Catal 2022. [DOI: 10.1007/s11244-022-01760-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Kushwaha CS, Abbas NS, Shukla SK. Chemically functionalized CuO/Sodium alginate grafted polyaniline for nonenzymatic potentiometric detection of chlorpyrifos. Int J Biol Macromol 2022; 217:902-909. [PMID: 35870631 DOI: 10.1016/j.ijbiomac.2022.07.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 11/24/2022]
Abstract
Non-enzymatic sensing of chlorpyrifos (CPF) has been demonstrated over structurally functionalized the ternary bio nanocomposite comprised of cupric oxide, sodium alginate, and polyaniline-based hybrid (CuO/SA-g-PANI) based electrode using a laboratory designed portable potentiometric set up. The prepared composite and constituents were characterized for structure, morphology, and physical properties with the help of fourier transform infrared, X-ray diffraction, Scanning electron microscope, and other relevant standard methods. The obtained results revealed the formation of porous, electrical conductivity, structurally functionalized, responsiveness composite due to molecular engineering, and structural synergism for sensing applications. Further, the film of the prepared composite was explored as the electrode for nonenzymatic potentiometric sensing of residual chlorpyrifos in synthetic and natural sample i.e., tap water, soil, mango, and cabbage. The sensor exhibits a wider sensing range 1.0-120.0 μM, improved sensitivity 1.8790 mV·μM-1·cm-2, detection limit 0.375 μM, response time 120 s, recovery time 16 s with 99.80 % accuracy, and stability of 72 days at neutral 7.0 pH and ambient temperature i.e. 25 °C. Further, the sensing mechanism has been also explained on the basis of structural change in CPF and electrode materials due to their surface interaction along with formation induced electrode potential.
Collapse
Affiliation(s)
- Chandra Shekhar Kushwaha
- Department of Chemistry, University of Delhi, Delhi 110007, India; Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi 110075, India
| | - N S Abbas
- Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi 110075, India
| | - Saroj Kr Shukla
- Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi 110075, India.
| |
Collapse
|
7
|
Recent Advances in Nanomaterial-Based Biosensors for Pesticide Detection in Foods. BIOSENSORS 2022; 12:bios12080572. [PMID: 36004968 PMCID: PMC9405907 DOI: 10.3390/bios12080572] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022]
Abstract
Biosensors are a simple, low-cost, and reliable way to detect pesticides in food matrices to ensure consumer food safety. This systematic review lists which nanomaterials, biorecognition materials, transduction methods, pesticides, and foods have recently been studied with biosensors associated with analytical performance. A systematic search was performed in the Scopus (n = 388), Web of Science (n = 790), and Science Direct (n = 181) databases over the period 2016–2021. After checking the eligibility criteria, 57 articles were considered in this study. The most common use of nanomaterials (NMs) in these selected studies is noble metals in isolation, such as gold and silver, with 8.47% and 6.68%, respectively, followed by carbon-based NMs, with 20.34%, and nanohybrids, with 47.45%, which combine two or more NMs, uniting unique properties of each material involved, especially the noble metals. Regarding the types of transducers, the most used were electrochemical, fluorescent, and colorimetric, representing 71.18%, 13.55%, and 8.47%, respectively. The sensitivity of the biosensor is directly connected to the choice of NM and transducer. All biosensors developed in the selected investigations had a limit of detection (LODs) lower than the Codex Alimentarius maximum residue limit and were efficient in detecting pesticides in food. The pesticides malathion, chlorpyrifos, and paraoxon have received the greatest attention for their effects on various food matrices, primarily fruits, vegetables, and their derivatives. Finally, we discuss studies that used biosensor detection systems devices and those that could detect multi-residues in the field as a low-cost and rapid technique, particularly in areas with limited resources.
Collapse
|
8
|
Sradha S A, George L, P K, Varghese A. Recent advances in electrochemical and optical sensing of the organophosphate chlorpyrifos: a review. Crit Rev Toxicol 2022; 52:431-448. [PMID: 36178423 DOI: 10.1080/10408444.2022.2122770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chlorpyrifos (CP) is one of the most popular organophosphorus pesticides that is commonly used in agricultural and nonagricultural environments to combat pests. However, several concerns regarding contamination due to the unmitigated use of chlorpyrifos have come up over recent years. This has popularized research on various techniques for chlorpyrifos detection. Since conventional methods do not enable smooth detection, the recent trends of chlorpyrifos detection have shifted toward electrochemical and optical sensing techniques that offer higher sensitivity and selectivity. The objective of this review is to provide a brief overview of some of the important and innovative contributions in the field of electrochemical and optical sensing of chlorpyrifos with a primary focus on the comparative advantages and shortcomings of these techniques. This review paper will help to offer better perspectives for research in organophosphorus pesticide detection in the future.
Collapse
Affiliation(s)
- Athira Sradha S
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | - Louis George
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | - Keerthana P
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| |
Collapse
|
9
|
Gu Q, Chen X, Lu C, Ye C, Li W, Chu J, Zhang W, Wang Z, Xu B. Electrochemical determination of capsaicinoids content in soy sauce and pot-roast meat products by glassy carbon electrode modified with MXene/PDDA-carbon nanotubes/β-cyclodextrin. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Ivanko I, Mahun A, Kobera L, Černochová Z, Pavlova E, Toman P, Pientka Z, Štěpánek P, Tomšík E. Synergy between the Assembly of Individual PEDOT Chains and Their Interaction with Light. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Iryna Ivanko
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
- Faculty of Science, Charles University, Albertov 2038, 128 00 Prague, Czech Republic
| | - Andrii Mahun
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
- Faculty of Science, Charles University, Albertov 2038, 128 00 Prague, Czech Republic
| | - Libor Kobera
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Zulfiya Černochová
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Petr Toman
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Zbyněk Pientka
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Petr Štěpánek
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Elena Tomšík
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| |
Collapse
|
11
|
Tutunaru O, Mihailescu CM, Savin M, Tincu BC, Stoian MC, Muscalu GS, Firtat B, Dinulescu S, Craciun G, Moldovan CA, Ficai A, Ion AC. Acetylcholinesterase entrapment onto carboxyl-modified single-walled carbon nanotubes and poly (3,4-ethylenedioxythiophene) nanocomposite, film electrosynthesis characterization, and sensor application for dichlorvos detection in apple juice. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Recent advances of enzyme biosensors for pesticide detection in foods. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01032-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Gu Q, Lu C, Chen K, Chen X, Ma P, Wang Z, Xu B. Electrochemical Determination of Capsaicinoids Content in Soy Sauce and Pot-Roast Meat Products Based on Glassy Carbon Electrode Modified with Β-Cyclodextrin/Carboxylated Multi-Wall Carbon Nanotubes. Foods 2021; 10:foods10081743. [PMID: 34441521 PMCID: PMC8392370 DOI: 10.3390/foods10081743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
The rapid quantification of capsaicinoids content is very important for the standardization of pungent taste degree and flavor control of soy sauce and pot-roast meat products. To rapidly quantify the capsaicinoids content in soy sauce and pot-roast meat products, an electrochemical sensor based on β-cyclodextrin/carboxylated multi-wall carbon nanotubes was constructed and the adsorptive stripping voltammetry method was used to enrich samples in this study. The results showed that the excellent performance of the established electrochemical sensor was mostly because β-cyclodextrin caused the relative dispersion of carboxylated multi-wall carbon nanotubes on the glassy carbon electrode surface. Capsaicin and dihydrocapsaicin had similar electrochemical behavior, so the proposed method could determine the total content of capsaicinoids. The linearity of capsaicinoids content was from 0.5 to 100 μmol/L and the detection limit was 0.27 μmol/L. The recovery rates of different capsaicinoids content were between 83.20% and 136.26%, indicating the proposed sensor could realize trace detection of capsaicinoids content in sauce and pot-roast meat products. This work provides a research basis for pungent taste degree standardization and flavor control in the food industry.
Collapse
Affiliation(s)
- Qianhui Gu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, China; (Q.G.); (X.C.); (P.M.)
- Three Squirrels Inc., 8 Jiusheng Road, Wuhu 241000, China; (C.L.); (K.C.)
| | - Chaoqun Lu
- Three Squirrels Inc., 8 Jiusheng Road, Wuhu 241000, China; (C.L.); (K.C.)
| | - Kangwen Chen
- Three Squirrels Inc., 8 Jiusheng Road, Wuhu 241000, China; (C.L.); (K.C.)
| | - Xingguang Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, China; (Q.G.); (X.C.); (P.M.)
| | - Pengfei Ma
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, China; (Q.G.); (X.C.); (P.M.)
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, China; (Q.G.); (X.C.); (P.M.)
- Correspondence: (Z.W.); (B.X.); Tel.: +86-15951581339 (Z.W.); +86-25-56677180 (B.X.)
| | - Baocai Xu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei 230601, China
- Correspondence: (Z.W.); (B.X.); Tel.: +86-15951581339 (Z.W.); +86-25-56677180 (B.X.)
| |
Collapse
|
14
|
Yang Y, Zhao Y, You T, Liu Q, Gao Y, Chen H, Yin P. A highly sensitive acetylcholinesterase electrochemical biosensor based on Au-Tb alloy nanospheres for determining organophosphate pesticides. NANOTECHNOLOGY 2021; 32:425501. [PMID: 34256363 DOI: 10.1088/1361-6528/ac13e8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Accurately detect the residues of organophosphate pesticides (OPs) in food and environment is critical to our daily lives. In this study, we developed a novel acetylcholinesterase (AChE) biosensor based on Au-Tb alloy nanospheres (NSs) for rapid and sensitive detection of OPs for the first time. Au-Tb alloy NSs that with good conductivity and biocompatibility were produced with a mild hydrothermal. Under optimal conditions, the AChE biosensor was obtained by a simple assembly process, with a big linear range (10-13-10-7M) and the limit of detection was 2.51 × 10-14M for the determination of methyl parathion. Moreover, the determination of methyl parathion with the prepared biosensor presented a high sensitivity, outstanding repeatability and superior stability compared with other reported biosensors. Through the determination of tap water and Yanming lake samples, it was proved that the modified biosensor with satisfactory recoveries (96.76%-108.6%), and are realizable in the determination of OPs in real samples.
Collapse
Affiliation(s)
- Yunxia Yang
- Key Laboratory of Applied Chemistry, Department of Applied Chemistry, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Yisong Zhao
- Key Laboratory of Applied Chemistry, Department of Applied Chemistry, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Tingting You
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, People's Republic of China
| | - Qian Liu
- Key Laboratory of Applied Chemistry, Department of Applied Chemistry, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Yukun Gao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, People's Republic of China
| | - Huaxiang Chen
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, People's Republic of China
| | - Penggang Yin
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, People's Republic of China
| |
Collapse
|
15
|
Jiang C, Yan F, Qin Y, Liang J, Xie L, Wang Y, Li T, Wang J, Zheng L, Ya Y. A sensitive acetylcholinesterase biosensor based on NaOH etching glassy carbon electrode for electrochemical determination of 3-nitropropionic acid. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Artabe AE, Cunha-Silva H, Barranco A. Enzymatic assays for the assessment of toxic effects of halogenated organic contaminants in water and food. A review. Food Chem Toxicol 2020; 145:111677. [PMID: 32810589 DOI: 10.1016/j.fct.2020.111677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/05/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
Abstract
Halogenated organic compounds are a particular group of contaminants consisting of a large number of substances, and of great concern due to their persistence in the environment, potential for bioaccumulation and toxicity. Some of these compounds have been classified as persistent organic pollutants (POPs) under The Stockholm Convention and many toxicity assessments have been conducted on them previously. In this work we provide an overview of enzymatic assays used in these studies to establish toxic effects and dose-response relationships. Studies in vivo and in vitro have been considered with a particular emphasis on the impact of halogenated compounds on the activity of relevant enzymes to the humans and the environment. Most information available in the literature focuses on chlorinated compounds, but brominated and fluorinated molecules are also the target of increasing numbers of studies. The enzymes identified can be classified as enzymes: i) the activities of which are affected by the presence of halogenated organic compounds, and ii) those involved in their metabolisation/detoxification resulting in increased activities. In both cases the halogen substituent seems to have an important role in the effects observed. Finally, the use of these enzymes in biosensing tools for monitoring of halogenated compounds is described.
Collapse
Affiliation(s)
- Amaia Ereño Artabe
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Bizkaia, Spain
| | - Hugo Cunha-Silva
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Bizkaia, Spain
| | - Alejandro Barranco
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Bizkaia, Spain.
| |
Collapse
|
17
|
Kaur N, Thakur H, Prabhakar N. Multi walled carbon nanotubes embedded conducting polymer based electrochemical aptasensor for estimation of malathion. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Zhao F, Wu J, Ying Y, She Y, Wang J, Ping J. Carbon nanomaterial-enabled pesticide biosensors: Design strategy, biosensing mechanism, and practical application. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.06.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Synthesis and electrochemical sensing application of poly(3,4-ethylenedioxythiophene)-based materials: A review. Anal Chim Acta 2018; 1022:1-19. [DOI: 10.1016/j.aca.2018.02.080] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 02/07/2023]
|
20
|
Gupta P, Bharti A, Kaur N, Singh S, Prabhakar N. An electrochemical aptasensor based on gold nanoparticles and graphene oxide doped poly(3,4-ethylenedioxythiophene) nanocomposite for detection of MUC1. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Voltammetric sensing based on the use of advanced carbonaceous nanomaterials: a review. Mikrochim Acta 2018; 185:89. [PMID: 29594390 DOI: 10.1007/s00604-017-2626-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/17/2017] [Indexed: 12/11/2022]
Abstract
This review (with 210 references) summarizes recent developments in the design of voltammetric chemical sensors and biosensors based on the use of carbon nanomaterials (CNMs). It is divided into subsections starting with an introduction into the field and a description of its current state. This is followed by a large section on various types of voltammetric sensors and biosensors using CNMs with subsections on sensors based on the use of carbon nanotubes, graphene, graphene oxides, graphene nanoribbons, fullerenes, ionic liquid composites with CNMs, carbon nanohorns, diamond nanoparticles, carbon dots, carbon nanofibers and mesoporous carbon. The third section gives conclusion and an outlook. Tables are presented on the application of such sensors to voltammetric detection of neurotransmitters, metabolites, dietary minerals, proteins, heavy metals, gaseous molecules, pharmaceuticals, environmental pollutants, food, beverages, cosmetics, commercial goods and drugs of abuse. The authors also describe advanced approaches for the fabrication of robust functional carbon nano(bio)sensors for voltammetric quantification of multiple targets. Graphical Abstract Featuring execellent electrical, catalytic and surface properies, CNMs have gained enormous attention for designing voltammetric sensors and biosensors. Functionalized CNM-modified electrode interfaces have demonstrated their prominent role in biological, environmental, pharmaceutical, chemical, food and industrial analysis.
Collapse
|
22
|
Kaur N, Prabhakar N. Current scenario in organophosphates detection using electrochemical biosensors. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.04.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
23
|
Amperometric determination of organophosphate pesticides using a acetylcholinesterase based biosensor made from nitrogen-doped porous carbon deposited on a boron-doped diamond electrode. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2380-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Thakur H, Kaur N, Sareen D, Prabhakar N. Electrochemical determination of M. tuberculosis antigen based on Poly(3,4-ethylenedioxythiophene) and functionalized carbon nanotubes hybrid platform. Talanta 2017; 171:115-123. [PMID: 28551117 DOI: 10.1016/j.talanta.2017.04.063] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 01/11/2023]
Abstract
An electrochemical DNA aptasensor for the detection of Mycobacterium tuberculosis (M. tb) antigen MPT64, was developed using Poly(3,4-ethylenedioxythiophene) (PEDOT) doped with carbon nanotubes (CNTs). The biotinylated aptamer was immobilized onto streptavidin attached to -COOH functionalized CNTs via streptavidin-biotin interaction. Various characterization studies as FT-IR, FE-SEM, EIS and DPV were done to validate each fabrication step of the aptasensor. Optimization studies related to aptamer concentration and response time were performed. The electrochemical signal generated from the aptamer-target molecule interaction was monitored electrochemically by differential pulse voltammetry in the presence of [Fe(CN)6]3-/4- as a redox probe. The aptasensor exhibited limit of detection of 0.5±0.2fgmL-1 within 15min with stability of 27 days at 4°C and reusability of 7 times after repeated regeneration with 50mM NaOH. The potential application of the aptasensor was established by spike-in studies to obtain recovery in between (88-95)%.
Collapse
Affiliation(s)
- Himkusha Thakur
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Navpreet Kaur
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Dipti Sareen
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Nirmal Prabhakar
- Department of Biochemistry, Panjab University, Chandigarh, India.
| |
Collapse
|
25
|
Conducting polymers revisited: applications in energy, electrochromism and molecular recognition. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3556-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Reusable voltammetric immunosensor for sCD40L, a biomarker for the acute coronary syndrome, using a glassy carbon electrode modified with a nanocomposite consisting of gold nanoparticles, branched polyethylenimine and carboxylated multiwalled carbon nanotubes. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2192-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Prabhakar N, Thakur H, Bharti A, Kaur N. Chitosan-iron oxide nanocomposite based electrochemical aptasensor for determination of malathion. Anal Chim Acta 2016; 939:108-116. [PMID: 27639149 DOI: 10.1016/j.aca.2016.08.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 07/29/2016] [Accepted: 08/09/2016] [Indexed: 11/30/2022]
Abstract
An electrochemical aptasensor based on chitosan-iron oxide nanocomposite (CHIT-IO) film deposited on fluorine tin Oxide (FTO) was developed for the detection of malathion. Iron oxide nanoparticles were prepared by co-precipitation method and characterized by Transmission electron microscopy and UV-Visible spectroscopy. The biotinylated DNA aptamer sequence specific to the malathion was immobilized onto the iron oxide doped-chitosan/FTO electrode by using streptavidin as linking molecule. Various characterization studies like Field Emission-Scanning Electron Microscopy (FE-SEM), Fourier Transform Infrared Spectroscopy (FT-IR), and Electrochemical studies were performed to attest the successful fabrication of bioelectrodes. Experimental parameters like aptamer concentration, response time, stability of electrode and reusability studies were optimized. Aptamer immobilized chitosan-iron oxide nanocomposite (APT/SA/CHIT-IO/FTO) bioelectrodes exhibited LOD of about 0.001 ng/mL within 15 min and spike-in studies revealed about 80-92% recovery of malathion from the lettuce leaves and soil sample.
Collapse
Affiliation(s)
- Nirmal Prabhakar
- Department of Biochemistry, Panjab University, Chandigarh 160014, India.
| | - Himkusha Thakur
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| | - Anu Bharti
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| | - Navpreet Kaur
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|