1
|
Mourdikoudis S, Dutta S, Kamal S, Gómez-Graña S, Pastoriza-Santos I, Wuttke S, Polavarapu L. State-of-the-Art, Insights, and Perspectives for MOFs-Nanocomposites and MOF-Derived (Nano)Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415399. [PMID: 40255059 DOI: 10.1002/adma.202415399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/21/2025] [Indexed: 04/22/2025]
Abstract
Composite structures created from metal‒organic framework (MOF) matrices are reviewed in this work. Depending on the nature of the second component apart from the MOF platform, several synergistic properties may arise; at the same time, the initial features of the single constituent materials are usually maintained, and individual shortcomings are mitigated. Currently, timely energy and environmental challenges necessitate the quest for more advanced materials and technologies. Significant developments in MOF-nanocomposites have enabled their application across a wide range of modern and traditional fields. This review demonstrates in an exhaustive and critical way a broad range of MOF-based nanocomposites, namely, MOF/perovskite nanoparticles (NPs), MOF/metal (non-iron) oxide NPs, MOF/Fe3O4 NPs, MOF/metal chalcogenide NPs, MOF/metal NPs, and MOF/carbon-based materials, as well as nanocomposites of MOFs with other semiconductor NPs. Key points related to the synthesis, characterization, and applications of these materials are provided. Depending on their configuration, the composites under discussion can be applied in domains such as photoelectrochemical sensing, antibiotic/dye degradation, optoelectronics, photovoltaics, catalysis, solar cells, supercapacitors, batteries, water remediation, and drug loading. Sometimes, MOFs can undergo certain processes (e.g. pyrolysis) and act as precursors for composite materials with appealing characteristics. Therefore, a special section in the manuscript is devoted to MOF-derived NP composites. Toward the end of the text, we conclude while also describing the challenges and possibilities for further investigations in the umbrella of material categories analyzed herein. Despite the progress achieved, key questions remain to be answered regarding the relationships among the morphology, properties, and polyvalent activity of these materials. The present work aims to shed light on most of their aspects and innovative prospects, facilitating a deeper comprehension of the underlying phenomena, functionality, and mechanistic insights governing their behavior.
Collapse
Affiliation(s)
- Stefanos Mourdikoudis
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, Campus Universitario Lagoas Marcosende, Vigo, 36310, Spain
| | - Subhajit Dutta
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48950, Spain
| | - Saqib Kamal
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, Campus Universitario Lagoas Marcosende, Vigo, 36310, Spain
- Department of Chemistry, Emerson University Multan (EUM), Multan, 60000, Pakistan
| | - Sergio Gómez-Graña
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, Campus Universitario Lagoas Marcosende, Vigo, 36310, Spain
| | - Isabel Pastoriza-Santos
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, Campus Universitario Lagoas Marcosende, Vigo, 36310, Spain
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48950, Spain
- Academic Centre for Materials and Nanotechnology, A. Mickiewicza 30, Krakow, 30-059, Poland
| | - Lakshminarayana Polavarapu
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, Campus Universitario Lagoas Marcosende, Vigo, 36310, Spain
| |
Collapse
|
2
|
Khosravi A, Habibpour R, Ranjbar M. Enhanced adsorption and removal of Cd(II) from aqueous solution by amino-functionalized ZIF-8. Sci Rep 2024; 14:10736. [PMID: 38730253 PMCID: PMC11087647 DOI: 10.1038/s41598-024-59982-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Zeolite imidazolate framework-8 (ZIF-8), which is a special subgroup of metal-organic frameworks (MOFs), was synthesized and modified by ethylenediamine (ZIF-8-EDA) to prepare an efficient adsorbent for the high sorption of Cd2+ ions from solution. The synthesized and modified ZIF-8 (ZIF-8-EDA) were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, Brunauer-Emmett-Teller (BET), field emission scanning electron microscopy (FE-SEM) with energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM) analysis. The optimum conditions for dosage of adsorbent, initial ion concentration, pH, and contact time were 0.05 g/l, 50 mg/l, 6, and 60 min, respectively, for cadmium ion sorption from aqueous solutions with a removal efficiency of 89.7% for ZIF-8 and 93.5% for ZIF-8-EDA. Adsorption kinetics and equilibrium data were analyzed using the Langmuir and Freundlich equations. The Langmuir model fitted the equilibrium data better than the Freundlich model. According to the Langmuir equation, the maximum uptake for the cadmium ions was 294.11(mg/g). The calculated thermodynamic parameters (ΔG°, ΔH°, and ΔS°) indicated that the adsorption process was feasible, spontaneous, and endothermic at 20-50 °C. Based on the results, the amino functionalized ZIF-8 had improved adsorption performance due to the replacing of the starting linker with organic ligands that had effective functional groups, leading to chemical coordination due to the interaction of metal ions with the non-bonding pair of electrons on the N atoms of the amino functional group. The selectivity toward metal ion adsorption by ZIF-8-EDA was Cd2+ > Pb2+ > Ni2+.
Collapse
Affiliation(s)
- Amir Khosravi
- Department of Chemical Technology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Razieh Habibpour
- Department of Chemical Technology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| | - Maryam Ranjbar
- Department of Chemical Technology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| |
Collapse
|
3
|
Zhao MM, Wu HZ, Deng XK, Yi RN, Yang Y. The application progress of magnetic solid-phase extraction for heavy metal analysis in food: a mini review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:333-343. [PMID: 38126405 DOI: 10.1039/d3ay01617j] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The emerging sample pretreatment technique of magnetic solid-phase extraction (MSPE) has drawn the attention of researchers owing to its advantages of less reagent consumption, fast separation/enrichment process, high adsorption capacity, and simple operation. This paper presents a review of synthesis techniques, classification, and analysis procedures for MSPE in the detection of heavy metals in food. Magnetic adsorbents derived from silica, metal oxides, carbon, polymers, etc., are applied for the detection of heavy metals in food. Then, the recent development of the technology of MSPE for the analysis of heavy metal extraction in food is summarized in detail. Finally, the future outlook for the improvement of MSPE is also discussed.
Collapse
Affiliation(s)
- Ming-Ming Zhao
- Criminal Technology Department, Hunan Police Academy, Changsha, Hunan, 410138, China
| | - Hai-Zhi Wu
- Hunan Province Institute of Product and Goods Quality Inspection, Changsha, Hunan 410007, China.
| | - Xiao-Ke Deng
- Criminal Technology Department, Hunan Police Academy, Changsha, Hunan, 410138, China
| | - Rong-Nan Yi
- Criminal Technology Department, Hunan Police Academy, Changsha, Hunan, 410138, China
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
4
|
Ayub J, Saeed MU, Hussain N, Zulfiqar I, Mehmood T, Iqbal HMN, Bilal M. Designing robust nano-biocatalysts using nanomaterials as multifunctional carriers - expanding the application scope of bio-enzymes. Top Catal 2023; 66:625-648. [DOI: 10.1007/s11244-022-01657-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 11/26/2022]
|
5
|
Abdolmohammad-Zadeh H, Ayazi Z, Veladi M. A magnetic nano-biocomposite based on calcined Ni–Fe layered double hydroxide and chitosan as an adsorbent for cadmium(II). JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-023-02753-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
6
|
Yusuf V, Malek NI, Kailasa SK. Review on Metal-Organic Framework Classification, Synthetic Approaches, and Influencing Factors: Applications in Energy, Drug Delivery, and Wastewater Treatment. ACS OMEGA 2022; 7:44507-44531. [PMID: 36530292 PMCID: PMC9753116 DOI: 10.1021/acsomega.2c05310] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/14/2022] [Indexed: 05/31/2023]
Abstract
Metal ions or clusters that have been bonded with organic linkers to create one- or more-dimensional structures are referred to as metal-organic frameworks (MOFs). Reticular synthesis also forms MOFs with properly designated components that can result in crystals with high porosities and great chemical and thermal stability. Due to the wider surface area, huge pore size, crystalline nature, and tunability, numerous MOFs have been shown to be potential candidates in various fields like gas storage and delivery, energy storage, catalysis, and chemical/biosensing. This study provides a quick overview of the current MOF synthesis techniques in order to familiarize newcomers in the chemical sciences field with the fast-growing MOF research. Beginning with the classification and nomenclature of MOFs, synthesis approaches of MOFs have been demonstrated. We also emphasize the potential applications of MOFs in numerous fields such as gas storage, drug delivery, rechargeable batteries, supercapacitors, and separation membranes. Lastly, the future scope is discussed along with prospective opportunities for the synthesis and application of nano-MOFs, which will help promote their uses in multidisciplinary research.
Collapse
Affiliation(s)
- Vadia
Foziya Yusuf
- Department of Chemistry, Sardar
Vallabhbhai National Institute of Technology, Surat, Gujarat 395007, India
| | - Naved I. Malek
- Department of Chemistry, Sardar
Vallabhbhai National Institute of Technology, Surat, Gujarat 395007, India
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar
Vallabhbhai National Institute of Technology, Surat, Gujarat 395007, India
| |
Collapse
|
7
|
Mansoorianfar M, Nabipour H, Pahlevani F, Zhao Y, Hussain Z, Hojjati-Najafabadi A, Hoang HY, Pei R. Recent progress on adsorption of cadmium ions from water systems using metal-organic frameworks (MOFs) as an efficient class of porous materials. ENVIRONMENTAL RESEARCH 2022; 214:114113. [PMID: 36030914 DOI: 10.1016/j.envres.2022.114113] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Various articles have been written about MOFs, which are organic-inorganic polymer structures that are unique in three-dimensional porosity, crystalline structure, and their ability to adsorb cadmium ion pollutants from aqueous solutions. These materials possess active metal sites, highly porous structures, high specific surfaces, high chemical functionality, and porous topologies. It is necessary to study adsorption kinetics, isotherms, and mechanisms in order to better understand the adsorption process. Adsorption kinetics can provide information about the adsorption rate and reaction pathway of adsorbents. Adsorption isotherms analyze the possibility of absorbances based on the Gibbs equation and thermodynamic theories. Moreover, in practical applications, knowledge of the adsorption mechanism is essential for predicting adsorption reactions and designing MOFs structures. In this review, the latest suggested adsorption mechanisms, kinetics, and isotherms of MOFs-based materials for removing cadmium ions are presented. A comparison is then conducted between different MOFs and the mechanisms of cadmium ion removal. We also discuss the future role of MOFs in removing environmental contaminants. Lastly, we discuss the gap in research and limitations of MOFs as adsorbents in actual applications, and probable technology development for the development of cost-efficient and sustainable MOFs for metal ion removal.
Collapse
Affiliation(s)
- Mojtaba Mansoorianfar
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Hafezeh Nabipour
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Farshid Pahlevani
- Centre for Sustainable Materials Research and Technology SMaRT@UNSW, School of Materials Science and Engineering, University of New South Wales (UNSW), Australia
| | - Yuewu Zhao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zahid Hussain
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Akbar Hojjati-Najafabadi
- College of Rare Earths, Jiangxi University of Science and Technology, No. 86, Hongqi Ave., Ganzhou, Jiangxi, 341000, China; Faculty of Materials, Metallurgy and Chemistry, School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Hien Y Hoang
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Viet Nam; Faculty of Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang, Viet Nam.
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
8
|
Taghavi R, Rostamnia S, Farajzadeh M, Karimi-Maleh H, Wang J, Kim D, Jang HW, Luque R, Varma RS, Shokouhimehr M. Magnetite Metal-Organic Frameworks: Applications in Environmental Remediation of Heavy Metals, Organic Contaminants, and Other Pollutants. Inorg Chem 2022; 61:15747-15783. [PMID: 36173289 DOI: 10.1021/acs.inorgchem.2c01939] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Due to the increasing environmental pollution caused by human activities, environmental remediation has become an important subject for humans and environmental safety. The quest for beneficial pathways to remove organic and inorganic contaminants has been the theme of considerable investigations in the past decade. The easy and quick separation made magnetic solid-phase extraction (MSPE) a popular method for the removal of different pollutants from the environment. Metal-organic frameworks (MOFs) are a class of porous materials best known for their ultrahigh porosity. Moreover, these materials can be easily modified with useful ligands and form various composites with varying characteristics, thus rendering them an ideal candidate as adsorbing agents for MSPE. Herein, research on MSPE, encompassing MOFs as sorbents and Fe3O4 as a magnetic component, is surveyed for environmental applications. Initially, assorted pollutants and their threats to human and environmental safety are introduced with a brief introduction to MOFs and MSPE. Subsequently, the deployment of magnetic MOFs (MMOFs) as sorbents for the removal of various organic and inorganic pollutants from the environment is deliberated, encompassing the outlooks and perspectives of this field.
Collapse
Affiliation(s)
- Reza Taghavi
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), 16846-13114 Tehran, Iran
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), 16846-13114 Tehran, Iran
| | - Mustafa Farajzadeh
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), 16846-13114 Tehran, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, 611731 Chengdu, PR China.,Department of Chemical Engineering, Quchan University of Technology, 9477177870 Quchan, Iran
| | - Jinghan Wang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, 08826 Seoul, Republic of Korea
| | - Dokyoon Kim
- Department of Bionano Engineering, Hanyang University, 15588 Ansan, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, 08826 Seoul, Republic of Korea
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, 14014 Cordoba, Spain.,Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya St., 117198 Moscow, Russia
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, 08826 Seoul, Republic of Korea
| |
Collapse
|
9
|
Xu C, He M, Chen B, Hu B. Magnetic porous coordination networks for preconcentration of various metal ions from environmental water followed by inductively coupled plasma mass spectrometry detection. Talanta 2022; 245:123470. [PMID: 35427948 DOI: 10.1016/j.talanta.2022.123470] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/28/2022] [Accepted: 04/07/2022] [Indexed: 12/29/2022]
Abstract
Magnetic composites of Fe3O4@SiO2@PCN-224 (MPCN-224) was obtained by one-pot method with the interaction between PCN-224 monomer and silicon layer on magnetic core. MPCN-224 exhibited a core-shell structure with the specific surface area of 1114 m2 g-1 and good adsorption performance for various metal ions. With MPCN-224 used as the sorbent, a method combing magnetic solid phase extraction (MSPE) with inductively coupled plasma mass spectrometry (ICPMS) detection was established for the enrichment and determination of trace Cr(III), Zn(II), Pb(II) and Bi(III) in environmental water samples. Under the optimized conditions, the developed method exhibited low detection limits of 0.94-11.4 ng L-1 and wide linear range for target four metal ions. The analysis speed was fast (2/5 min for adsorption and desorption respectively). The MPCN-224 sorbent could be reused for at least 12 times, and the regeneration can be achieved easily by adjusting solution pH. The sorbent and the MSPE-ICPMS method have a great potential for adsorption and determination of trace metal ions in environmental water samples.
Collapse
Affiliation(s)
- Chi Xu
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
10
|
Hassan Amini M, Alijani H, Hossein Beyki M. Toxic cadmium selective sequestration from food samples using melamine anchored magnetic cellulose by surface imprinting route. Food Chem 2022; 396:133688. [PMID: 35843002 DOI: 10.1016/j.foodchem.2022.133688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/25/2022] [Accepted: 07/10/2022] [Indexed: 01/28/2023]
Abstract
Cadmium is very toxic for living organisms hence selective and efficient control capturing of it is necessary. To reach this goal a novel imprinted polymer was developed using melamine anchored MnFe2O4 - cellulose. Magnetic cellulose was synthesized through an ultrasound-assisted precipitation route. Chloropropyltriethoxysilane was used to attach melamine to the magnetic cellulose surface. Response surface methodology employed to optimize effective parameters on cadmium adsorption. Time of 13 min, the dosage of 18 mg and pH of 8 was selected as optimum conditions. The relative standard deviation, detection limits and adsorption capacity were 2,5%, 0.50 µgL-1 and 138 mg g-1 respectively. The selectivity coefficient of Cd(II) relative to Cu(II), Co(II), Ni(II) and Pb(II) were 4, 5, 12 and 3, respectively. Regeneration of the sorbent was performed using HCl (0.5 mol L-1) as eluent. The method was used for cadmium preconcentration in fish, lettuce and liver with satisfactory results.
Collapse
Affiliation(s)
| | - Hassan Alijani
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mostafa Hossein Beyki
- School of Chemistry, University College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
11
|
Asgharinezhad AA, Esmaeilpour M, Siavoshani AY. Extraction and preconcentration of Ni(ii), Pb(ii), and Cd(ii) ions using a nanocomposite of the type Fe 3O 4@SiO 2@polypyrrole-polyaniline. RSC Adv 2022; 12:19108-19114. [PMID: 35865601 PMCID: PMC9244641 DOI: 10.1039/d2ra03077b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, the application of Fe3O4@SiO2@polypyrrole-polyaniline magnetic nanocomposite was studied for Ni(ii), Cd(ii), and Pb(ii) ions preconcentration extraction. In this regard, the silica layer prevents the Fe3O4 nanoparticles (NPs) from aggregating over a broad pH range value and simultaneously improves chemical stability and hydrophilicity. By using a Box-Behnken design, the effect of various parameters affecting the preconcentration was studied. FAAS was employed to quantify the eluted analytes. The detection limits are 0.09, 1.1, and 0.3 ng mL-1 for Ni(ii), Cd(ii) and Pb(ii), ions, respectively. The relative standard deviations (RSDs%) were calculated for determining the method's precision, lower than 7.5%. The capacities of sorption are 75, 84, and 98 mg g-1, respectively. With the usage of a certified reference material, the developed method was validated. After that, the validated method was employed to rapidly extract trace target ions from food samples and gave satisfactory results.
Collapse
Affiliation(s)
- Ali Akbar Asgharinezhad
- Chemistry and Process Research Department, Niroo Research Institute (NRI) Tehran Iran +98 21 88078296 +98 21 88079400
| | - Mohsen Esmaeilpour
- Chemistry and Process Research Department, Niroo Research Institute (NRI) Tehran Iran +98 21 88078296 +98 21 88079400
| | | |
Collapse
|
12
|
Amin S, Alavi SA, Aghayan H, Yousefnia H. Efficient adsorption of cesium using a novel composite inorganic ion-exchanger based on metal organic framework (Ni[(BDC)(TED)]) modified matal hexacyanoferrate. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Martínez SAH, Melchor-Martínez EM, Hernández JAR, Parra-Saldívar R, Iqbal HM. Magnetic nanomaterials assisted nanobiocatalysis systems and their applications in biofuels production. FUEL 2022; 312:122927. [DOI: 10.1016/j.fuel.2021.122927] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Barros TM, Medeiros de Araújo D, Lemos de Melo AT, Martínez-Huitle CA, Vocciante M, Ferro S, Vieira dos Santos E. An Electroanalytical Solution for the Determination of Pb 2+ in Progressive Hair Dyes Using the Cork-Graphite Sensor. SENSORS 2022; 22:s22041466. [PMID: 35214367 PMCID: PMC8875311 DOI: 10.3390/s22041466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 12/22/2022]
Abstract
Lead is one of the most toxic metals for living organisms: once absorbed by soft tissues, it is capable of triggering various pathologies, subsequently bioaccumulating in the bones. In consideration of this, its detection and quantification in products for human consumption and use is of great interest, especially if the procedure can be carried out in an easy, reproducible and economical way. This work presents the results of the electroanalytical determination of lead in three different commercial products used as progressive hair dyes. Analyses were performed by cyclic voltammetry (CV) and differential pulse stripping voltammetry (DPSV) using a composite cork–graphite sensor in 0.5M H2SO4 solution or 0.1M acetate buffer (pH 4.5), in the presence and absence of hair dye samples. The H2SO4 solution gave better results in terms of analyte sensitivity than the acetate buffer electrolyte. In both cases, well-defined signals for lead were obtained by DPSV analyses, enabling the calibration curve and figures of merit to be determined. The limits of detection (LOD) were found to be approximately 1.06 µM and 1.26 µM in H2SO4 and acetate buffer, respectively. The DPSV standard addition method was successfully applied to quantify the lead in hair dye samples, yielding values below 0.45% in Pb. All three analyzed samples were shown to comply with the limit set by the Brazilian Health Regulatory Agency, i.e., 0.6% lead in this type of product. The comparison of the electroanalytical results with those obtained by the reference method, based on the use of inductively coupled plasma optical emission spectrometry (ICP–OES), confirmed that the electroanalytical detection approach is potentially applicable as a strategy for quality control.
Collapse
Affiliation(s)
- Thalita Medeiros Barros
- Laboratório de Eletroquímica Ambiental e Aplicada, Instituto de Química, Universidade Federal do Rio Grande do Norte, Lagoa Nova, Natal 59.072-900, RN, Brazil; (T.M.B.); (D.M.d.A.); (A.T.L.d.M.); (C.A.M.-H.)
| | - Danyelle Medeiros de Araújo
- Laboratório de Eletroquímica Ambiental e Aplicada, Instituto de Química, Universidade Federal do Rio Grande do Norte, Lagoa Nova, Natal 59.072-900, RN, Brazil; (T.M.B.); (D.M.d.A.); (A.T.L.d.M.); (C.A.M.-H.)
- Laboratório de Eletroquímica e Química Analítica, Programa de Pós Graduação em Ciências Naturais, Universidade do Estado do Rio Grande do Norte, Natal 59.610-210, RN, Brazil
| | - Alana Tamires Lemos de Melo
- Laboratório de Eletroquímica Ambiental e Aplicada, Instituto de Química, Universidade Federal do Rio Grande do Norte, Lagoa Nova, Natal 59.072-900, RN, Brazil; (T.M.B.); (D.M.d.A.); (A.T.L.d.M.); (C.A.M.-H.)
- Laboratório de Eletroquímica e Química Analítica, Programa de Pós Graduação em Ciências Naturais, Universidade do Estado do Rio Grande do Norte, Natal 59.610-210, RN, Brazil
| | - Carlos Alberto Martínez-Huitle
- Laboratório de Eletroquímica Ambiental e Aplicada, Instituto de Química, Universidade Federal do Rio Grande do Norte, Lagoa Nova, Natal 59.072-900, RN, Brazil; (T.M.B.); (D.M.d.A.); (A.T.L.d.M.); (C.A.M.-H.)
| | - Marco Vocciante
- Department of Chemistry and Industrial Chemistry, University of Genova, 16146 Genova, Italy;
| | - Sergio Ferro
- Ecas4 Australia Pty Ltd., Mile End South, SA 5031, Australia
- Correspondence: (S.F.); (E.V.d.S.)
| | - Elisama Vieira dos Santos
- Laboratório de Eletroquímica Ambiental e Aplicada, Instituto de Química, Universidade Federal do Rio Grande do Norte, Lagoa Nova, Natal 59.072-900, RN, Brazil; (T.M.B.); (D.M.d.A.); (A.T.L.d.M.); (C.A.M.-H.)
- Correspondence: (S.F.); (E.V.d.S.)
| |
Collapse
|
15
|
Pinar Gumus Z, Soylak M. Metal organic frameworks as nanomaterials for analysis of toxic metals in food and environmental applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116417] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Jia X, Zhao J, Wang J, Ren H, Hong Z, Wu K. Amine functionalized polyacrylonitrile fibers for the selective preconcentration of trace metals prior to their on-line determination by ICP-MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2504-2511. [PMID: 34002186 DOI: 10.1039/d1ay00511a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Amine functionalized polyacrylonitrile fibers (PANFs) were prepared and applied for the simultaneous separation and preconcentration of V(v), As(iii), Sn(iv), Sb(iii) and Bi(ii) from environmental water samples in this paper. The functional PANFs were first prepared by nucleophilic substitution reaction between hydroxylamine hydrochloride and polyacrylonitrile fibers, and then the reactant obtained in the first step was subjected to a ring opening reaction with epichlorohydrin, followed by modification with triethylenetetramine (TETA). The structure of the final polymer fibers was analyzed by Fourier transform infrared spectroscopy (FT-IR), and the morphology was characterized by scanning electron microscopy (SEM). A home-made solid phase extraction (SPE) pretreatment column was filled with PANFs, and then online connected with inductively coupled plasma mass spectrometry (ICP-MS) for quantitative determination of metal ions. Under the optimized experimental conditions, the target metal ions were eluted rapidly and quantitatively using 0.3 mol L-1 HNO3 solution. Only with 30 mL sample solution, high enrichment factors of 120 were obtained for V(v), As(iii), Sn(iv) and Sb(iii), and 115 for Bi(ii), respectively. The detection limits achieved were low: 1.2, 0.9, 1.7, 1.5 and 2.3 ng L-1 for V(v), As(iii), Sn(iv), Sb(iii) and Bi(ii), respectively, and the relative standard deviations (RSDs) were below 3.0%. The advanced fiber materials prepared in this work have the advantages of low cost, environmental friendliness and high adsorption efficiency, and the on-line preconcentration method has greatly improved the analysis efficiency. Finally, the feasibility and accuracy of the method were validated by successfully analyzing Certified Reference Materials (CRMs) as well as lake, river and sea water samples.
Collapse
Affiliation(s)
- Xiaoyu Jia
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China. and ZheJiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315830, P.R. China
| | - Junyi Zhao
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China. and ZheJiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315830, P.R. China
| | - Jiani Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China.
| | - Hongyun Ren
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China.
| | - Zixiao Hong
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China.
| | - Kun Wu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China. and ZheJiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315830, P.R. China
| |
Collapse
|
17
|
Yang GL, Jiang XL, Xu H, Zhao B. Applications of MOFs as Luminescent Sensors for Environmental Pollutants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005327. [PMID: 33634574 DOI: 10.1002/smll.202005327] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/16/2020] [Indexed: 06/12/2023]
Abstract
The environmental pollution has become a serious issue because the pollutants can cause permanent damage to the DNA, nervous system, and circulating system, resulting in various incurable diseases, such as organ failure, malformation, angiocardiopathy, and cancer. The effective detection of environmental pollutants is urgently needed to keep them far away from daily life. Among the reported pollutant sensors, luminescent metal-organic frameworks (LMOFs) with tunable structures have attracted remarkable attention to detect the pollutants because of their excellent selectivity, sensitivity, and recyclability. Although lots of metal-organic framework (MOF)-based luminescent sensors have been summarized and discussed in previous reviews, the detection of environmental pollutants, especially radioactive ions and heavy metal ions, still have not been systematically presented. Here, the sensing mechanisms and construction principles of luminescent MOFs are discussed, and the state-of-the-art MOF-based luminescent sensors of environmental pollutants, including pesticides, antibiotics, explosives, VOCs, toxic gas, toxic small molecules, radioactive ions, and heavy metal ions are highlighted. This comprehensive review may further guide the development of luminescent MOFs and promote their practical applications for sensing environmental pollutants.
Collapse
Affiliation(s)
- Guo-Li Yang
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE Nankai University, Tianjin, 300071, China
| | - Xiao-Lei Jiang
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE Nankai University, Tianjin, 300071, China
| | - Hang Xu
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE Nankai University, Tianjin, 300071, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE Nankai University, Tianjin, 300071, China
| |
Collapse
|
18
|
Catalytic Combustion of Toluene over Highly Dispersed Cu-CeOx Derived from Cu-Ce-MOF by EDTA Grafting Method. Catalysts 2021. [DOI: 10.3390/catal11040519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In this work, Cu-CeOx-MOF catalysts with well-dispersed Cu in different contents were synthesized via the ethylenediaminetetraacetic acid (EDTA) grafting method. EDTA was grafted in Ce-MOF-808 to anchor Cu and then the metal-organic frameworks (MOFs) were utilized as sacrificial template to form highly performed Cu-CeOx-MOF for toluene catalytic combustion. In this series of samples, Cu-CeOx-MOF-0.2 had a higher ratio of Oα/(Oα+Oβ), more oxygen vacancies and performed better low-temperature reducibility. Cu-CeOx-MOF-0.2 showed outstanding catalytic activity and stability. The T90 (temperature when toluene conversion achieved 90%) of Cu-CeOx-MOF-0.2 was 226 °C at 60,000 mL/(gcat∙h). In situ diffuse reflectance infrared transform spectroscopy (in situ DRIFTS) results revealed that the opening of aromatic ring and the deep oxidation of carboxylate were key steps for toluene catalytic combustion over Cu-CeOx-MOF-0.2.
Collapse
|
19
|
Metal-organic frameworks for food applications: A review. Food Chem 2021; 354:129533. [PMID: 33743447 DOI: 10.1016/j.foodchem.2021.129533] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/24/2022]
Abstract
Metal-organic frameworks (MOFs) are high surface-to-volume ratio crystalline hybrid porous coordination materials composed of metal ions as nodes and organic linkers. The goal of this paper was to provide an updated and comprehensive state-of-the-art review of MOFs for different food applications such as active food contact materials, antimicrobial nanocarriers, controlled release nanosystems for active compounds, nanofillers for food packaging materials, food nanoreactors, food substance nanosensors, stabilizers and immobilizers for active compounds and enzymes, and extractors of food contaminants. Extraction and sensing of several food contaminants have been the main food applications of MOFs. The other applications listed above require further investigation, as they are at an early stage. However, interesting results are being reported for these other fields. Finally, an important limitation of MOFs has been the use of non-renewable feedstocks for their synthesis, but this has recently been solved through the manufacture and use of γ-cyclodextrin-based MOFs.
Collapse
|
20
|
Magnetic Fe 3O 4@Mg/Al-layered double hydroxide adsorbent for preconcentration of trace metals in water matrices. Sci Rep 2021; 11:2302. [PMID: 33504835 PMCID: PMC7840964 DOI: 10.1038/s41598-021-81839-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
A magnetic Fe3O4@MgAl-layered double hydroxide (MLDH) nanocomposite was successfully synthesized and applied as an effective adsorbent for preconcentration of trace As(III), Cd(II), Cr(III), Co(II), Ni(II), and Pb(II) ions from complex matrices. The quantification of the analytes was achieved using the inductively coupled plasma optical emission spectrometry (ICP-OES) technique. The nanocomposite was then characterized using BET, FTIR, SEM, and EDS. Due to its high adsorption surface area, compared to traditional metal oxide-based adsorbents, MLDH nanocomposite exhibited high extraction efficiency. Several experimental parameters controlling the preconcentration of the trace metals were optimized using response surface methodology based on central composite design. Under optimum conditions, the linearity ranged from 0.1 to 500 µg L−1 and the correlation of coefficients (R2) were higher than 0.999. The limits of detection (LODs) and quantification (LOQs) were 0.11–0.22 µg L−1 and 0.35–0.73 µg L−1, respectively. The intra-day (n = 10) and inter-day precisions (n = 5 working days) expressed in the form of percent relative standard deviations (%RSDs) were below 5%. The proposed method was successfully applied for the analysis of the As(III), Cd(II), Cr(III), Co(II), Ni(II), and Pb(II) ions in different environmental water samples.
Collapse
|
21
|
Rani L, Kaushal J, Srivastav AL, Mahajan P. A critical review on recent developments in MOF adsorbents for the elimination of toxic heavy metals from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44771-44796. [PMID: 32975757 DOI: 10.1007/s11356-020-10738-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Effective and substantial remediation of contaminants especially heavy metals from water is still a big challenge in terms of both environmental and biological perspectives because of their adverse effects on the human health. Many techniques including adsorption, ion exchange, co-precipitation, chemical reduction, ultrafiltration, etc. are reported for eliminating heavy metal ions from the water. However, adsorption has preferred because of its simple and easy handlings. Several types of adsorbents are observed and documented well for the purpose. Recently, highly porous metal-organic frameworks (MOFs) were developed by incorporating metals and organic ligands together and claimed as potent adsorbents for the remediation of highly toxic heavy metals from the aqueous solutions due to their unique features like greater surface area, high chemical stability, green and reuse material, etc. In this review, the authors discussed systematically some recent developments about secure MOFs to eliminate the toxic metals such as arsenic (both arsenite and arsenate), chromium(VI), cadmium (Cd), mercury (Hg) and lead (Pb). MOFs are observed as the most efficient adsorbents with greater selectivity as well as high adsorption capacity for metallic contamination. Graphical abstract.
Collapse
Affiliation(s)
- Lata Rani
- Centre for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
- Chitkara University School of Basic Sciences, Chitkara University, Baddi, Himachal Pradesh, India
| | - Jyotsna Kaushal
- Centre for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India.
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Baddi, Himachal Pradesh, India
| | - Pooja Mahajan
- Centre for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| |
Collapse
|
22
|
Khan WA, Arain MB, Soylak M. Nanomaterials-based solid phase extraction and solid phase microextraction for heavy metals food toxicity. Food Chem Toxicol 2020; 145:111704. [DOI: 10.1016/j.fct.2020.111704] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 12/25/2022]
|
23
|
|
24
|
Jakavula S, Biata NR, Dimpe KM, Pakade VE, Nomngongo PN. A Critical Review on the Synthesis and Application of Ion-Imprinted Polymers for Selective Preconcentration, Speciation, Removal and Determination of Trace and Essential Metals from Different Matrices. Crit Rev Anal Chem 2020; 52:314-326. [PMID: 32723191 DOI: 10.1080/10408347.2020.1798210] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The presence of toxic trace metals and high concentrations of essential elements in the environment presents a serious threat to living organism. Various methods have been used for the detection, preconcentration and remediation of these metals from biological, environmental and food matrices. Owing to the complexicity of samples, methods with high selectivity have been used for detection, preconcentration and remediation of these trace metals. These methods are achieved by the use of ion-imprinted polymers (IIPs) due to their impressive properties such as selectivity, high extraction efficiency, speciation capability and reusability. Because of the increase of toxic trace and essential metals in the environment, IIPs have attracted great use in analytical chemistry. This review, provide a brief background on IIPs and polymerization method that are used for their preparation. Recent applications of IIPs as adsorbents for preconcentration, removal, speciation and electrochemical detection of trace and essential metal is also discussed.
Collapse
Affiliation(s)
- Silindokuhle Jakavula
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa.,DSI/NRF SARChI Chair, Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa
| | - N Raphael Biata
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa.,DSI/NRF SARChI Chair, Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa.,DSI/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein, South Africa
| | - K Mogolodi Dimpe
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Vusumzi E Pakade
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Philiswa N Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa.,DSI/NRF SARChI Chair, Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa.,DSI/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
25
|
Huang L, Huang W, Shen R, Shuai Q. Chitosan/thiol functionalized metal-organic framework composite for the simultaneous determination of lead and cadmium ions in food samples. Food Chem 2020; 330:127212. [PMID: 32526650 DOI: 10.1016/j.foodchem.2020.127212] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/03/2020] [Accepted: 05/31/2020] [Indexed: 12/30/2022]
Abstract
In this work, a facile solid phase extraction (SPE) method was developed for the analysis of trace Pb2+ and Cd2+ by using chitosan/thiol modified metal-organic frameworks (CS/MOF-SH) composite as adsorbent followed by graphite furnace atomic absorption spectrometer (GF-AAS) detection. The potential influencing factors, such as solution pH, adsorbent dosage, and extraction time, were fully estimated. Under the optimized extraction conditions, the detection limits of Pb2+ and Cd2+ were 0.033 µg L-1 and 0.008 µg L-1, respectively. Compared to other studies, CS/MOF-SH not only possessed superior adsorption performance, but also had the advantages of ease of handling and recyclability. Encouragingly, the developed method was of high accuracy and could monitor trace Pb2+ and Cd2+ in various certified reference materials (rice, wheat and tea) with complicated matrices, demonstrating its practical potential for regular monitoring of trace heavy metal ions in real food samples.
Collapse
Affiliation(s)
- Lijin Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, PR China.
| | - Wan Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, PR China.
| | - Rujia Shen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, PR China.
| | - Qin Shuai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, PR China.
| |
Collapse
|
26
|
Derived N-doped carbon through core-shell structured metal-organic frameworks as a novel sorbent for dispersive solid phase extraction of Cr(III) and Pb(II) from water samples followed by quantitation through flame atomic absorption spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104786] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
|
28
|
Boontongto T, Burakham R. Simple magnetization of Fe 3 O 4 /MIL-53(Al)-NH 2 for a rapid vortex-assisted dispersive magnetic solid-phase extraction of phenol residues in water samples. J Sep Sci 2020; 43:3083-3092. [PMID: 32445251 DOI: 10.1002/jssc.202000426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022]
Abstract
The present work describes a simple route to magnetize MIL-53(Al)-NH2 sorbent for rapid extraction of phenol residues from environmental samples. To extend the applications and performances of the metal-organic frameworks in the field of adsorption materials, we combined the properties of metal-organic frameworks and magnetite to decrease the extraction time and simplify the extraction process as well. In this study, a simple and quick vortex-assisted dispersive magnetic solid phase extraction method for the extraction of ten United States Environmental Protection Agency's priority phenols from water samples prior to analysis by high-performance liquid chromatography with photodiode array detection was proposed. The developed method exhibits a rapid enrichment of the target analytes within 10 s for extraction and 10 s for desorption. Low detection limits of 1.8-41.7 µg/L and quantitation limits of 6.0-139.0 µg/L with the relative standard deviations for intra- and interday analyses less than 12% were achieved. Satisfactory recoveries in the range of 80-111% with the relative standard deviations less than 11% demonstrated that Fe3 O4 /MIL-53(Al)-NH2 is promising sorbent in the field of magnetic solid-phase extraction for environmental samples.
Collapse
Affiliation(s)
- Tittaya Boontongto
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Rodjana Burakham
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
29
|
Hanif M, Yasmeen K, Muhammad H, Shah F, Hussain S, Atta-ur-Rehman, Masab M, Ali ST, Tahiri IA. A Wide Bandgap Ag/MgO@Fe3O4 Nanocomposite as Magnetic Sorbent for Cd(II) in Water Samples. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411015666191205102628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The magnetic nanocomposites are very important as a reusable sorbents for
the extraction of Cd(II) and other toxic metals from water samples.
Methods:
The Ag/MgO@Fe3O4 nanocomposite was synthesized by the coprecipitation method and
characterized by the XRD, EDX, SEM, UV-vis spectroscopy and FTIR. This nanocomposite was
used to extract Cd(II) from water samples prior to its quantitative analysis with FAAS. Different variables,
i.e. pH, temperature, amount of nanosorbent, adsorption/desorption and dilution were optimized.
Results:
The method was successfully applied to determine Cd(II) in real water samples with
excellent recoveries (98%). The present method has lower detection (0.29) and quantification limit
(0.97 ng mL-1).
Conclusions:
The Ag/MgO@Fe3O4 nanocomposite based magnetic extraction is a simple, fast, reproducible,
less expansive and efficient technique for the Cd(II) extraction in water samples. The developed
sorbent can be recycled and reused (20 times).
Collapse
Affiliation(s)
- Muddasir Hanif
- Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Kousar Yasmeen
- Department of Chemistry, Federal Urdu University of Arts, Sciences and Technology, Gulshan-e-Iqbal Campus, Karachi- 75300, Pakistan
| | - Haji Muhammad
- Department of Chemistry, Federal Urdu University of Arts, Sciences and Technology, Gulshan-e-Iqbal Campus, Karachi- 75300, Pakistan
| | - Faheem Shah
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060-Abbottabad, Pakistan
| | - Saqib Hussain
- Department of Chemistry, Federal Urdu University of Arts, Sciences and Technology, Gulshan-e-Iqbal Campus, Karachi- 75300, Pakistan
| | - Atta-ur-Rehman
- Department of Chemistry, Federal Urdu University of Arts, Sciences and Technology, Gulshan-e-Iqbal Campus, Karachi- 75300, Pakistan
| | - Muhammad Masab
- Department of Chemistry, Government Degree College Hangu, Hangu District, KPK, Pakistan
| | - Syed Tahir Ali
- Department of Chemistry, Federal Urdu University of Arts, Sciences and Technology, Gulshan-e-Iqbal Campus, Karachi- 75300, Pakistan
| | - Iftikhar Ahmad Tahiri
- Department of Chemistry, Federal Urdu University of Arts, Sciences and Technology, Gulshan-e-Iqbal Campus, Karachi- 75300, Pakistan
| |
Collapse
|
30
|
A magnetic adsorbent based on salicylic acid-immobilized magnetite nano-particles for pre-concentration of Cd(II) ions. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-020-1930-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Vardali SC, Manousi N, Barczak M, Giannakoudakis DA. Novel Approaches Utilizing Metal-Organic Framework Composites for the Extraction of Organic Compounds and Metal Traces from Fish and Seafood. Molecules 2020; 25:E513. [PMID: 31991663 PMCID: PMC7036755 DOI: 10.3390/molecules25030513] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 01/19/2023] Open
Abstract
The determination of organic and inorganic pollutants in fish samples is a complex and demanding process, due to their high protein and fat content. Various novel sorbents including graphene, graphene oxide, molecular imprinted polymers, carbon nanotubes and metal-organic frameworks (MOFs) have been reported for the extraction and preconcentration of a wide range of contaminants from fish tissue. MOFs are crystalline porous materials that are composed of metal ions or clusters coordinated with organic linkers. Those materials exhibit extraordinary properties including high surface area, tunable pore size as well as good thermal and chemical stability. Therefore, metal-organic frameworks have been recently used in many fields of analytical chemistry including sample pretreatment, fabrication of stationary phases and chiral separations. Various MOFs, and especially their composites or hybrids, have been successfully utilized for the sample preparation of fish samples for the determination of organic (i.e., antibiotics, antimicrobial compounds, polycyclic aromatic hydrocarbons, etc.) and inorganic pollutants (i.e., mercury, palladium, cadmium, lead, etc.) as such or after functionalization with organic compounds.
Collapse
Affiliation(s)
- Sofia C. Vardali
- Institute of Biological Marine Resources, Hellenic Center of Marine Research, Agios Kosmas, Hellenikon, 16777 Athens, Greece
| | - Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Mariusz Barczak
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031 Lublin, Poland;
| | | |
Collapse
|
32
|
Abstract
The demand for the recovery of valuable metals and the need to understand the impact of heavy metals in the environment on human and aquatic life has led to the development of new methods for the extraction, recovery, and analysis of metal ions. With special emphasis on environmentally friendly approaches, efforts have been made to consider strategies that minimize the use of organic solvents, apply micromethodology, limit waste, reduce costs, are safe, and utilize benign or reusable materials. This review discusses recent developments in liquid- and solid-phase extraction techniques. Liquid-based methods include advances in the application of aqueous two- and three-phase systems, liquid membranes, and cloud point extraction. Recent progress in exploiting new sorbent materials for solid-phase extraction (SPE), solid-phase microextraction (SPME), and bulk extractions will also be discussed.
Collapse
|
33
|
Mehrani Z, Karimpour Z, Ebrahimzadeh H. Using PVA/CA/Au NPs electrospun nanofibers as a green nanosorbent to preconcentrate and determine Pb2+and Cu2+in rice samples, water sources and cosmetics. NEW J CHEM 2020. [DOI: 10.1039/d0nj03352a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polyvinyl alcohol (PVA)/citric acid (CA)/Au NPs electrospun nanofibers was synthesized and applied as a green and efficient sorbent to extract and preconcentrate Pb2+and Cu2+from water sources, rice samples and cosmetics before FAAS.
Collapse
Affiliation(s)
- Zahra Mehrani
- Faculty of Chemistry and Petroleum Sciences
- Shahid Beheshti University
- Tehran
- Iran
| | - Zahra Karimpour
- Faculty of Chemistry and Petroleum Sciences
- Shahid Beheshti University
- Tehran
- Iran
| | | |
Collapse
|
34
|
Landarani M, Asgharinezhad AA, Ebrahimzadeh H. A magnetic ion-imprinted polymer composed of silica-coated magnetic nanoparticles and polymerized 4-vinyl pyridine and 2,6-diaminopyridine for selective extraction and determination of lead ions. NEW J CHEM 2020. [DOI: 10.1039/d0nj01109f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A novel, sensitive and highly selective magnetic ion-imprinted polymer for facile separation and preconcentration of trace quantities of Pb(ii) ions.
Collapse
Affiliation(s)
- Mohammad Landarani
- Faculty of Chemistry and Petroleum Sciences
- Shahid Beheshti University
- Tehran
- Iran
| | | | | |
Collapse
|
35
|
Manousi N, Giannakoudakis DA, Rosenberg E, Zachariadis GA. Extraction of Metal Ions with Metal-Organic Frameworks. Molecules 2019; 24:E4605. [PMID: 31888229 PMCID: PMC6943743 DOI: 10.3390/molecules24244605] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022] Open
Abstract
Metal-organic frameworks (MOFs) are crystalline porous materials composed of metal ions or clusters coordinated with organic linkers. Due to their extraordinary properties such as high porosity with homogeneous and tunable in size pores/cages, as well as high thermal and chemical stability, MOFs have gained attention in diverse analytical applications. MOFs have been coupled with a wide variety of extraction techniques including solid-phase extraction (SPE), dispersive solid-phase extraction (d-SPE), and magnetic solid-phase extraction (MSPE) for the extraction and preconcentration of metal ions from complex matrices. The low concentration levels of metal ions in real samples including food samples, environmental samples, and biological samples, as well as the increased number of potentially interfering ions, make the determination of trace levels of metal ions still challenging. A wide variety of MOF materials have been employed for the extraction of metals from sample matrices prior to their determination with spectrometric techniques.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Erwin Rosenberg
- Institute of Chemical Technology and Analytics, Vienna University of Technology, 1060 Vienna, Austria;
| | - George A. Zachariadis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
36
|
Recent advances in emerging nanomaterials based food sample pretreatment methods for food safety screening. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115669] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Hamidi S, Taghvimi A, Mazouchi N. Micro Solid Phase Extraction Using Novel Adsorbents. Crit Rev Anal Chem 2019; 51:103-114. [DOI: 10.1080/10408347.2019.1684235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Samin Hamidi
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Taghvimi
- Biotechnology Research Centre and Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
| | - Negin Mazouchi
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
38
|
Jiang HL, Li N, Cui L, Wang X, Zhao RS. Recent application of magnetic solid phase extraction for food safety analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115632] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
39
|
Sorouraddin SM, Farajzadeh MA, Okhravi T. Development of dispersive liquid-liquid microextraction based on deep eutectic solvent using as complexing agent and extraction solvent: application for extraction of heavy metals. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1666874] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
- Engineering Faculty, Near East University, Nicosia, Turkey
| | - Tohid Okhravi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
40
|
Gao EJ, Chen J, Hui Y, Wu S, Zhang T, Song D, Liu D, Zhu MC. Synthesis, characterization and fluorescent properties of two porous lead(II) complexes assembled from similar carboxylphenyl terpyridine polydentate ligands. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Preconcentration of Pb with Aminosilanized Fe3O4 Nanopowders in Environmental Water Followed by Electrothermal Atomic Absorption Spectrometric Determination. CHEMENGINEERING 2019. [DOI: 10.3390/chemengineering3030074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A new preconcentration method to determine lead in environmental waters using the aminosilanized magnetite Fe3O4 powder sorbent has been developed. The preconcentration method was combined with electrothermal atomization atomic absorption spectrometry (ETAAS) and a graphite atomizer. Trace amount of sorbent (3 mg) could be applied into the preconcentration of Pb. According the preconcentration, the detection limits were 14 and 19 pg·mL−1 with bare and aminosilanized Fe3O4, respectively. The effect of interferent elements such as Al, Ca, Co, Fe, K, Mg, Na, Ni, and Zn (1000 ng·mL−1 versus Pb 1 ng·mL−1) on the preconcentration of Pb using bare magnetite was evaluated, and some elements (Al, Ni, and Zn) were found to interfere with the Pb preconcentration. The aminosilanized Fe3O4 sorbent was found to be effective in eliminating the severe interferences. The enrichment factors were 34 for the preconcentration with aminosilanized Fe3O4. The recovery of spiked Pb in the case of the sorbent with aminosilanized Fe3O4 was in the range of 75 to 110%. From the analytical data, the preconcentration technique was found to be useful for the determination of trace lead in environmental waters.
Collapse
|
42
|
A nanosized magnetic metal-organic framework of type MIL-53(Fe) as an efficient sorbent for coextraction of phenols and anilines prior to their quantitation by HPLC. Mikrochim Acta 2019; 186:597. [PMID: 31375929 DOI: 10.1007/s00604-019-3698-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 07/13/2019] [Indexed: 10/26/2022]
Abstract
The authors describe the synthesis of a magnetic metal-organic framework (MOF) of type MIL-53(Fe) for coextraction of phenols and anilines from various environmental samples. A quick method for dispersive micro-solid phase extraction (D-μ-SPE) was developed for coextraction of the analytes 4-nitrophenol (4-NP), 4-chlorophenol (4-CP), 4-chloroaniline (4-CA), 1-amino-2-naphtol (1-A2N) and 2, 4-dichloroaniline (2, 4-DCA). The MOF was characterized by SEM, TEM, FT-IR, EDS, thermogravimetry, VSM and XRD. The method was optimized by response surface methodology combined with desirability function approach, specifically with respect to pH value of the sample, amount of sorbent, sorption time, salt concentration, sample volume, type and volume of the eluent, and elution time. Following elution with acetonitrile, the analytes were quantified by HPLC with photodiode array detection. Responses are linear in 0.1-2000 μg·L-1 concentration ranges. The limits of detection and relative standard deviations (for n = 5) are in the range of 0.03-0.2 μg·L-1 and 3.5-12.6%, respectively. Enrichment factors are 113, 61, 87, 144 and 114 for 4-NP, 4-CP, 4-CA, 1-A2N and 2,4-DCA, respectively. Recoveries from spiked samples ranged from 39.5 to 93.3%. The magnetic sorbent was successfully applied to the coextraction and determination of the analytes in river, rain and hookah water samples. Graphical abstract Schematic presentation for the synthesis of (a) Fe3O4 nanoparticles (NPs) and (b) Fe3O4@MIL-53(Fe). Fe3O4@MIL-53(Fe) was employed as a new nanosorbent in dispersive micro-solid phase extraction of phenols and anilines. The limits of detection are in the range of 0.03-0.2 μg·L-1.
Collapse
|
43
|
Nasehi P, Mahmoudi B, Abbaspour SF, Moghaddam MS. Cadmium adsorption using novel MnFe 2O 4-TiO 2-UIO-66 magnetic nanoparticles and condition optimization using a response surface methodology. RSC Adv 2019; 9:20087-20099. [PMID: 35514738 PMCID: PMC9065485 DOI: 10.1039/c9ra03430g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/12/2019] [Indexed: 12/02/2022] Open
Abstract
In this study, magnetic nanocomposites (UIO-66-MnFe2O4-TiO2) were synthesized based on the metal–organic framework. To investigate the synthesized adsorbent structure, XRD, SEM, FT-IR, BET, and VSM techniques were used, and also an EDX test was applied after adsorption of Cd(ii). The synthesized nanocomposite was used for Cd(ii) adsorption. The effects of four parameters such as the amount of adsorbent (0.05 to 0.25 g), pH (1 to 9), adsorption time (24 to 120 minutes), initial amount of metal ion (100 to 900 mg), at five levels (−2 to +2) were evaluated during the experiment based on the Response Surface Methodology (RSM) using Central Composite Design (CCD) and then, the optimal levels were determined. The F-value and P-value of the fitted second order model were obtained as 6039.62 and 0.0001, respectively. Optimization of the values was also performed for variables and, initial concentration of metal, pH, adsorption time and amount of adsorbent were obtained as 5.2 mg l−1, 5, 63 minutes, and 0.18 g, respectively as optimum conditions. For optimal conditions, the maximum adsorbance was equal to 98%. Investigation of kinetic and isotherm adsorption showed that a second-order kinetic model and a Langmuir isotherm cover the Cd(ii) adsorption data well. It was also revealed that the adsorbent was removed from the environment by an external magnetic field. In this study, magnetic nanocomposites (UIO-66-MnFe2O4-TiO2) were synthesized based on the metal–organic framework.![]()
Collapse
Affiliation(s)
- Pedram Nasehi
- Department of Chemical Engineering, Quchan University of Technology Quchan Iran
| | - Boshra Mahmoudi
- Research Centre, Sulaimani Polytechnic University Sulaimani 46001 Kurdistan Region Iraq
| | | | | |
Collapse
|
44
|
Jamshidifard S, Koushkbaghi S, Hosseini S, Rezaei S, Karamipour A, Jafari Rad A, Irani M. Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(II), Cd(II) and Cr(VI) ions from aqueous solutions. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:10-20. [PMID: 30658159 DOI: 10.1016/j.jhazmat.2019.01.024] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 05/27/2023]
Abstract
In the present study, the UiO-66-NH2 MOF synthesized by microwave heating method was incorporated into the PAN/chitosan nanofibers for the removal of Pb(II), Cd(II) and Cr(VI) ions through the adsorption and membrane filtration processes. The synthesized MOFs and nanofibers were characterized using XRD, BET, FTIR, SEM, and DSC analysis. The effect of UiO-66-NH2 MOF content (0-15 wt.%), pH (2-7), contact time(5-90 min), metal ions initial concentration (20-1000 mg/L) and temperature (25-45 °C) was studied on the metal ions adsorption using PAN/chitosan/UiO-66-NH2 nanofibrous adsorbent. The kinetic, isotherm and thermodynamic parameters were evaluated to understand the metal ions adsorption mechanism using nanofibers. The Pseudo-second-order kinetic and Redlich-Peterson isotherm model were well described the experimental sorption data. In the heavy metal ions membrane filtration process, the different parameters such as MOF concentration (2-15 wt.%), membrane thickness (10-70 μm), metal ions concentration (5-50 mg/L), temperature (25-45 °C) and filtration time (1-24 h) were investigated on the performance of PVDF/ PAN/chitosan/UiO-66-NH2 nanofibrous membrane toward metal ions removal. The high water flux and high metal ions removal within 18 h filtration time showed the high potential of PVDF/ PAN/chitosan/UiO-66-NH2 membrane for the removal of metal ions from aqueous solutions.
Collapse
Affiliation(s)
- Sana Jamshidifard
- Faculty of Chemical Engineering, Iran University of Science & Technology, Tehran, Iran
| | | | | | - Sina Rezaei
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Alireza Karamipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Azadeh Jafari Rad
- Department of Chemistry Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran
| | - Mohammad Irani
- Young Researchers & Elite Club, Tehran North Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
45
|
Al'Abri AM, Mohamad S, Abdul Halim SN, Abu Bakar NK. Development of magnetic porous coordination polymer adsorbent for the removal and preconcentration of Pb(II) from environmental water samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:11410-11426. [PMID: 30805837 DOI: 10.1007/s11356-019-04467-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
A novel porous coordination polymer adsorbent (BTCA-P-Cu-CP) based on a piperazine(P) as a ligand and 1,2,4,5-benzenetetracarboxylic acid (BTCA) as a linker was synthesized and magnetized to form magnetic porous coordination polymer (BTCA-P-Cu-MCP). Fourier transform infrared (FTIR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), field emission scanning electron microscope(FESEM), energy-dispersive X-ray spectroscopy(EDS), CHN, and Brunauer-Emmett-Teller(BET) analysis were used to characterize the synthesized adsorbent. BTCA-P-Cu-MCP was used for removal and preconcentration of Pb(II) ions from environmental water samples prior to flame atomic absorption spectrometry(FAAS) analysis. The maximum adsorption capacity of BTCA-P-Cu-MCP was 582 mg g-1. Adsorption isotherm, kinetic, and thermodynamic parameters were investigated for Pb(II) ions adsorption. Magnetic solid phase extraction (MSPE) method was used for preconcentration of Pb(II) ions and the parameters influencing the preconcentration process have been examined. The linearity range of proposed method was 0.1-100 μg L-1 with a preconcentration factor of 100. The limits of detection and limits of quantification for lead were 0.03 μg L-1 and 0.11 μg L-1, respectively. The intra-day (n = 7) and inter-day (n = 3) relative standard deviations (RSDs) were 1.54 and 3.43% respectively. The recoveries from 94.75 ± 4 to 100.93 ± 1.9% were obtained for rapid extraction of trace levels of Pb(II) ions in different water samples. The results showed that the BTCA-P-Cu-MCP was steady and effective adsorbent for the decontamination and preconcentration of lead ions from the aqueous environment.
Collapse
Affiliation(s)
- Aisha Mohammed Al'Abri
- Department of Chemistry, Faculty of Science, University Malaya, 50603, Kuala Lumpur, Malaysia
- Ministry of Education Sultanate of Oman, Muscat, Oman
| | - Sharifah Mohamad
- Department of Chemistry, Faculty of Science, University Malaya, 50603, Kuala Lumpur, Malaysia.
- University Malaya Centre for Ionic Liquids (UMCiL), University Malaya Kuala Lumpur, 50603, Kuala Lumpur, Malaysia.
| | - Siti Nadiah Abdul Halim
- Department of Chemistry, Faculty of Science, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nor Kartini Abu Bakar
- Department of Chemistry, Faculty of Science, University Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
46
|
Karimi MA, Masrouri H, Karami H, Andishgar S, Mirbagheri MA, Pourshamsi T. Highly efficient removal of toxic lead ions from aqueous solutions using a new magnetic metal‐organic framework nanocomposite. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201800378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Hassan Masrouri
- Department of Chemistry and Petrochemical EngineeringStandard Research Institute Karaj Iran
| | - Hassan Karami
- Department of ChemistryPayame Noor University Tehran Iran
| | | | | | | |
Collapse
|
47
|
Eskandarpour M, Jamshidi P, Moghaddam MR, Ghasmei JB, Shemirani F. A highly selective magnetic solid-phase extraction method for preconcentration of Cd(II) using N,N′-bis(salicylidene)ethylenediamine in water and food samples. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03783-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
48
|
Esmaeilzadeh M. Ultrasound-assisted dispersive magnetic solid phase extraction based on metal–organic framework/1-(2-pyridylazo)-2-naphthol modified magnetite nanoparticle composites for speciation analysis of inorganic tin. NEW J CHEM 2019. [DOI: 10.1039/c8nj06288a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel magnetic metal–organic framework (MMOF) consisting of MIL-101(Cr) and 1-(2-pyridylazo)-2-naphthol-modified magnetite nanoparticles was synthesized and utilized for the ultrasound-assisted magnetic solid phase extraction and speciation analysis of Sn(ii) and Sn(iv) at trace amounts.
Collapse
Affiliation(s)
- Majid Esmaeilzadeh
- Department of Physics
- Iran University of Science and Technology
- Tehran
- Iran
| |
Collapse
|
49
|
Esmaeilzadeh M. A composite prepared from a metal-organic framework of type MIL-101(Fe) and morin-modified magnetite nanoparticles for extraction and speciation of vanadium(IV) and vanadium(V). Mikrochim Acta 2018; 186:14. [DOI: 10.1007/s00604-018-3093-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 11/09/2018] [Indexed: 11/27/2022]
|
50
|
Applications of Metal-Organic Frameworks in Food Sample Preparation. Molecules 2018; 23:molecules23112896. [PMID: 30404197 PMCID: PMC6278442 DOI: 10.3390/molecules23112896] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 01/22/2023] Open
Abstract
Food samples such as milk, beverages, meat and chicken products, fish, etc. are complex and demanding matrices. Various novel materials such as molecular imprinted polymers (MIPs), carbon-based nanomaterials carbon nanotubes, graphene oxide and metal-organic frameworks (MOFs) have been recently introduced in sample preparation to improve clean up as well as to achieve better recoveries, all complying with green analytical chemistry demands. Metal-organic frameworks are hybrid organic inorganic materials, which have been used for gas storage, separation, catalysis and drug delivery. The last few years MOFs have been used for sample preparation of pharmaceutical, environmental samples and food matrices. Due to their high surface area MOFs can be used as adsorbents for the development of sample preparation techniques of food matrices prior to their analysis with chromatographic and spectrometric techniques with great performance characteristics.
Collapse
|