1
|
Sariga, Varghese A. The Renaissance of Ferrocene-Based Electrocatalysts: Properties, Synthesis Strategies, and Applications. Top Curr Chem (Cham) 2023; 381:32. [PMID: 37910233 DOI: 10.1007/s41061-023-00441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
The fascinating electrochemical properties of the redox-active compound ferrocene have inspired researchers across the globe to develop ferrocene-based electrocatalysts for a wide variety of applications. Advantages including excellent chemical and thermal stability, solubility in organic solvents, a pair of stable redox states, rapid electron transfer, and nontoxic nature improve its utility in various electrochemical applications. The use of ferrocene-based electrocatalysts enables control over the intrinsic properties and electroactive sites at the surface of the electrode to achieve specific electrochemical activities. Ferrocene and its derivatives can function as a potential redox medium that promotes electron transfer rates, thereby enhancing the reaction kinetics and electrochemical responses of the device. The outstanding electrocatalytic activity of ferrocene-based compounds at lower operating potentials enhances the specificity and sensitivity of reactions and also amplifies the response signals. Owing to their versatile redox chemistry and catalytic activities, ferrocene-based electrocatalysts are widely employed in various energy-related systems, molecular machines, and agricultural, biological, medicinal, and sensing applications. This review highlights the importance of ferrocene-based electrocatalysts, with emphasis on their properties, synthesis strategies for obtaining different ferrocene-based compounds, and their electrochemical applications.
Collapse
Affiliation(s)
- Sariga
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India
| | - Anitha Varghese
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India.
| |
Collapse
|
2
|
Algethami FK, Rabti A, Mastouri M, Abdulkhair BY, Ben Aoun S, Raouafi N. Highly sensitive capacitance-based nitrite sensing using polydopamine/AuNPs-modified screen-printed carbon electrode. RSC Adv 2023; 13:21336-21344. [PMID: 37465569 PMCID: PMC10350640 DOI: 10.1039/d3ra03898j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
Regulatory bodies play a crucial role in establishing limits for food additives to ensure food quality and safety of food products, as excessive usage poses risks to consumers. In the context of processed animal-based foodstuffs, nitrite is commonly utilized as a means to slow down bacterial degradation. In this study, we have successfully leveraged the redox activity of an electrochemically deposited polydopamine (pDA) film onto gold nanoparticle (AuNP)-modified screen-printed electrodes (SPCE) to develop a sensitive and versatile methodology for the detection of nitrite using redox capacitance spectroscopy. By exploiting the interaction of the AuNPs/pDA electroactive interface with the target nitrite ions, we observed distinct changes in the redox distribution, subsequently leading to modifications in the associated redox capacitance. This alteration enables the successful detection of nitrite, exhibiting a linear response within the concentration range of 10 to 500 μM, with a limit of detection of 1.98 μM (S/N = 3). Furthermore, we applied the developed sensor to analyze nitrite levels in processed meats, yielding good recoveries. These results demonstrate the potential of our approach as a promising method for routine detection of ions.
Collapse
Affiliation(s)
- Faisal K Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) P.O. Box 90950 Riyadh 11623 Saudi Arabia @imamu.edu.sa
| | - Amal Rabti
- Sensors and Biosensors Group, Analytical Chemistry and Electrochemistry Lab (LR99ES15), Department of Chemistry, Faculty of Science, University of Tunis El Manar Tunis El Manar 2092 Tunis Tunisia
- National Institute of Research and Physicochemical Analysis (INRAP), Laboratory of Materials, Treatment, and Analysis (LMTA), Biotechpole Sidi Thabet 2020 Sidi Thabet Tunisia
| | - Mohamed Mastouri
- Sensors and Biosensors Group, Analytical Chemistry and Electrochemistry Lab (LR99ES15), Department of Chemistry, Faculty of Science, University of Tunis El Manar Tunis El Manar 2092 Tunis Tunisia
| | - Babiker Y Abdulkhair
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) P.O. Box 90950 Riyadh 11623 Saudi Arabia @imamu.edu.sa
| | - Sami Ben Aoun
- Department of Chemistry, Faculty of Science, Taibah University P.O. Box 30002 Al-Madinah Al-Munawwarah Saudi Arabia
| | - Noureddine Raouafi
- Sensors and Biosensors Group, Analytical Chemistry and Electrochemistry Lab (LR99ES15), Department of Chemistry, Faculty of Science, University of Tunis El Manar Tunis El Manar 2092 Tunis Tunisia
| |
Collapse
|
3
|
Baachaoui S, Mabrouk W, Rabti A, Ghodbane O, Raouafi N. Laser-induced graphene electrodes scribed onto novel carbon black-doped polyethersulfone membranes for flexible high-performance microsupercapacitors. J Colloid Interface Sci 2023; 646:1-10. [PMID: 37178610 DOI: 10.1016/j.jcis.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
A facile and expandable methodology was successfully developed to fabricate laser-induced graphene from novel pristine aminated polyethersulfone (amPES) membranes. The as-prepared materials were applied as flexible electrodes for microsupercapacitors. The doping of amPES membranes with various weight percentages of carbon black (CB) microparticles was then performed to improve their energy storage performance. The lasing process allowed the formation of sulfur- and nitrogen-codoped graphene electrodes. The effect of electrolyte on the electrochemical performance of as-prepared electrodes was investigated and the specific capacitance was significantly enhanced in 0.5 M HClO4. Remarkably, the highest areal capacitance of 47.3 mF·cm-2 was achieved at a current density of 0.25 mA·cm-2. This capacitance is approximately 12.3 times higher than the average value for commonly used polyimide membranes. Furthermore, the energy and power densities were as high as 9.46 µWh·cm-2 and 0.3 mW·cm-2 at 0.25 mA·cm-2, respectively. The galvanostatic charge-discharge experiments confirmed the excellent performance and stability of amPES membranes during 5,000 cycles, where more than 100% of capacitance retention was achieved and the coulombic efficiency was improved up to 96.67%. Consequently, the fabricated CB-doped PES membranes offer several advantages including low carbon fingerprint, cost-effectiveness, high electrochemical performance and potential applications in wearable electronic systems.
Collapse
Affiliation(s)
- Sabrine Baachaoui
- University of Tunis El Manar, Chemistry Department, Analytical Chemistry and Electrochemistry Lab (LR99ES15), Tunis El Manar 2092, Tunisia
| | - Walid Mabrouk
- CERTE, Laboratory Water, Membranes and Environmental Biotechnology, Water Research and Technologies Center, Technologic Park Borj Cedria, BP 273, Soliman 8020, Tunisia
| | - Amal Rabti
- National Institute of Research and Physicochemical Analysis (INRAP), Laboratory of Materials, Treatment, and Analysis (LMTA), Biotechpole Sidi Thabet, 2020 Sidi Thabet, Tunisia
| | - Ouassim Ghodbane
- National Institute of Research and Physicochemical Analysis (INRAP), Laboratory of Materials, Treatment, and Analysis (LMTA), Biotechpole Sidi Thabet, 2020 Sidi Thabet, Tunisia
| | - Noureddine Raouafi
- University of Tunis El Manar, Chemistry Department, Analytical Chemistry and Electrochemistry Lab (LR99ES15), Tunis El Manar 2092, Tunisia.
| |
Collapse
|
4
|
Gholizadeh A, Black K, Kipen H, Laumbach R, Gow A, Weisel C, Javanmard M. Detection of respiratory inflammation biomarkers in non-processed exhaled breath condensate samples using reduced graphene oxide. RSC Adv 2022; 12:35627-35638. [PMID: 36545081 PMCID: PMC9745889 DOI: 10.1039/d2ra05764f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
In this work, we studied several important parameters regarding the standardization of a portable sensor of nitrite, a key biomarker of inflammation in the respiratory tract in untreated EBC samples. The storage of the EBC samples and electrical properties of both EBC samples and the sensor as main standardization parameters were investigated. The sensor performance was performed using differential pulse voltammetry (DPV) in a standard nitrite solution and untreated EBC samples. The storage effect was monitored by comparing sensor data of fresh and stored samples for one month at -80 °C. Results show, on average, a 20 percent reduction of peak current for stored solutions. The sensor's performance was compared with a previous EBC nitrite sensor and chemiluminescence method. The results demonstrate a good correlation between the present sensor and chemiluminescence for low nitrite concentrations in untreated EBC samples. The electrical behavior of the sensor and electrical variation between EBC samples were characterized using methods such as noise analysis, electrochemical impedance spectroscopy (EIS), electrical impedance (EI), and voltage shift. Data show that reduced graphene oxide (rGO) has lower electrical noise and a higher electron transfer rate regarding nitrite detection. Also, a voltage shift can be applied to calibrate the data based on the electrical variation between different EBC samples. This result makes it easy to calibrate the electrical difference between EBC samples and have a more reproducible portable chip design without using bulky EI instruments. This work helps detect nitrite in untreated and pure EBC samples and evaluates critical analytical EBC properties essential for developing portable and on-site point-of-care sensors.
Collapse
Affiliation(s)
- Azam Gholizadeh
- Department of Electrical and Computer Engineering, Rutgers University Piscataway NJ 08854 USA
| | - Kathleen Black
- Environmental Occupational Health Sciences Institute, Rutgers University Piscataway NJ 08854 USA
| | - Howard Kipen
- Environmental Occupational Health Sciences Institute, Rutgers University Piscataway NJ 08854 USA
| | - Robert Laumbach
- Environmental Occupational Health Sciences Institute, Rutgers University Piscataway NJ 08854 USA
| | - Andrew Gow
- Ernest Mario School of Pharmacy, Rutgers University Piscataway NJ 08854 USA
| | - Clifford Weisel
- Environmental Occupational Health Sciences Institute, Rutgers University Piscataway NJ 08854 USA
| | - Mehdi Javanmard
- Department of Electrical and Computer Engineering, Rutgers University Piscataway NJ 08854 USA
| |
Collapse
|
5
|
Dorovskikh SI, Klyamer DD, Fedorenko AD, Morozova NB, Basova TV. Electrochemical Sensor Based on Iron(II) Phthalocyanine and Gold Nanoparticles for Nitrite Detection in Meat Products. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22155780. [PMID: 35957335 PMCID: PMC9371027 DOI: 10.3390/s22155780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 05/27/2023]
Abstract
Nitrites are widely used in the food industry, particularly for the preservation of meat products. Controlling the nitrate content in food is an important task to ensure people's health is not at risk; therefore, the search for, and research of, new materials that will modify the electrodes in the electrochemical sensors that detect and control the nitrate content in food products is an urgent task. In this paper, we describe the electrochemical behavior of a glass carbon electrode (GCE), modified with a Fe(II) tetra-tert-butyl phthalocyanine film (FePc(tBu)4/GCE), and decorated with gold nanoparticles (Au/FePc(tBu)4/GCE); this electrode was deposited using gas-phase methods. The composition and morphology of such electrodes were examined using spectroscopy and electron microscopy methods, whereas the main electrochemical characteristics were determined using cyclic voltammetry (CV) and amperometry (CA) methods in the linear ranges of CV 0.25-2.5 mM, CA 2-120 μM in 0.1 M phosphate buffer (pH = 6.8). The results showed that the modification of bare GCEs, with a Au/FePc(tBu)4 heterostructure, provided a high surface-to-volume ratio, thus ensuring its high sensitivity to nitrite ions of 0.46 μAμM-1. The sensor based on the Au/FePc(tBu)4/GCE has a low limit of nitrite detection at 0.35 μM, good repeatability, and stability. The interference study showed that the proposed Au/FePc(tBu)4/GCE exhibited a selective response in the presence of interfering anions, and the analytical capability of the sensor was demonstrated by determining nitrite ions in real samples of meat products.
Collapse
|
6
|
Du Y, Wang B, Kang K, Ji X, Wang L, Zhao W, Ren J. Signal synergistic amplification strategy based on functionalized CeMOFs for highly sensitive electrochemical detection of phenolic isomers. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Tajiki A, Abdouss M, Sadjadi S, Mazinani S, Ramakrishna S. Photo-induced green synthesis of bimetallic Ag/Pd nanoparticles decorated reduced graphene oxide/nitrogen-doped graphene quantum dots nanocomposite as an amperometric sensor for nitrite detection. Anal Bioanal Chem 2021; 413:6289-6301. [PMID: 34345948 DOI: 10.1007/s00216-021-03584-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/17/2021] [Accepted: 07/27/2021] [Indexed: 11/24/2022]
Abstract
The present study introduces a novel nanocomposite based on reduced graphene oxide, nitrogen-doped graphene quantum dots, and palladium and silver nanoparticles (rGO/NGQD/AgPd) as an electrocatalyst toward nitrite oxidation reaction. Metal nanoparticles were prepared via a green one-pot photochemical reduction procedure utilizing UV light and NGQD simultaneously as a reducing and directing agent. Formation of the nanocomposite was thoroughly demonstrated by the FT-IR, XRD, Raman, XPS, FE-SEM, and TEM characterization tests. Various electrochemical tests evaluated the efficiency of the prepared sensing platform on the surface of a gold working electrode. Sensitivity and limit of detection (LOD) were calculated to be 0.854 μA.μM-1.cm-2 and 0.052 μM, respectively, from the chronoamperometry data. Finally, the proposed sensor was successfully applied for the determination of nitrite ions in river and mineral water samples as natural water sources.
Collapse
Affiliation(s)
- Alireza Tajiki
- Chemistry Department, Amirkabir University of Technology, Tehran, 1591634311, Iran
| | - Majid Abdouss
- Chemistry Department, Amirkabir University of Technology, Tehran, 1591634311, Iran.
| | - Sodeh Sadjadi
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Saeedeh Mazinani
- New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran, 1591634311, Iran
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore
| |
Collapse
|
8
|
Kanoun O, Lazarević-Pašti T, Pašti I, Nasraoui S, Talbi M, Brahem A, Adiraju A, Sheremet E, Rodriguez RD, Ben Ali M, Al-Hamry A. A Review of Nanocomposite-Modified Electrochemical Sensors for Water Quality Monitoring. SENSORS (BASEL, SWITZERLAND) 2021; 21:4131. [PMID: 34208587 PMCID: PMC8233775 DOI: 10.3390/s21124131] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Electrochemical sensors play a significant role in detecting chemical ions, molecules, and pathogens in water and other applications. These sensors are sensitive, portable, fast, inexpensive, and suitable for online and in-situ measurements compared to other methods. They can provide the detection for any compound that can undergo certain transformations within a potential window. It enables applications in multiple ion detection, mainly since these sensors are primarily non-specific. In this paper, we provide a survey of electrochemical sensors for the detection of water contaminants, i.e., pesticides, nitrate, nitrite, phosphorus, water hardeners, disinfectant, and other emergent contaminants (phenol, estrogen, gallic acid etc.). We focus on the influence of surface modification of the working electrodes by carbon nanomaterials, metallic nanostructures, imprinted polymers and evaluate the corresponding sensing performance. Especially for pesticides, which are challenging and need special care, we highlight biosensors, such as enzymatic sensors, immunobiosensor, aptasensors, and biomimetic sensors. We discuss the sensors' overall performance, especially concerning real-sample performance and the capability for actual field application.
Collapse
Affiliation(s)
- Olfa Kanoun
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
| | - Tamara Lazarević-Pašti
- Department of Physical Chemistry, “VINČA” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Igor Pašti
- Faculty of Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia;
| | - Salem Nasraoui
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Malak Talbi
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Amina Brahem
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Anurag Adiraju
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
| | - Evgeniya Sheremet
- Research School of Physics, Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Raul D. Rodriguez
- Research School of Chemical and Biomedical Technologies, Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Mounir Ben Ali
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Ammar Al-Hamry
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
| |
Collapse
|
9
|
Chemical Redox-Modulated Etching of Plasmonic Nanoparticles for Nitrite Detection: Comparison Among Gold Nanosphere, Nanorod, and Nanotriangle. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00153-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Baachaoui S, Aldulaijan S, Raouafi F, Besbes R, Sementa L, Fortunelli A, Raouafi N, Dhouib A. Pristine graphene covalent functionalization with aromatic aziridines and their application in the sensing of volatile amines - an ab initio investigation. RSC Adv 2021; 11:7070-7077. [PMID: 35423218 PMCID: PMC8694903 DOI: 10.1039/d0ra09964c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
Food quality is of paramount importance for public health safety. For instance, fish freshness can be assessed by sensing the volatile short chain alkylamines produced by spoiled fish. Functionalized graphene is a good candidate for the design of gas sensors for such compounds and therefore of interest as the basic material in food quality sensor devices. To shed theoretical insight in this direction, in the present work we investigate via first-principles density functional theory (DFT) simulations: (i) graphene functionalization via aziridine appendages and (ii) the adsorption of short chain alkylamines (methylamine MA, dimethylamine DMA, and trimethylamine TMA) on the chemically functionalized graphene sheets. Optimal geometries, adsorption energies, and projected density of states (PDOS) are computed using a DFT method. We show that nitrene reactive intermediates, formed by thermal or photo splitting of arylazides - p-carboxyphenyl azide (1a), p-carboxyperfluorophenyl azide (1b), and p-nitrophenyl azide (1c) - react with graphene to yield functionalized derivatives, with reaction energies >-1.0 eV and barriers of the order of 2.0 eV, and open a ∼0.3 to 0.5 eV band gap which is in principle apt for applications in sensing and electronic devices. The interaction between the amines and functionalized graphene, as demonstrated from the calculations of charge density differences showing regions of charge gain and others of charge depletion between the involved groups, occurs through hydrogen bonding with interaction energies ranging from -0.04 eV to -0.76 eV, and induce charge differences in the system, which in the case of p-carboxyperfluorophenyl azide (1b) are sizeable enough to be experimentally observable in sensing.
Collapse
Affiliation(s)
- Sabrine Baachaoui
- Laboratoire de Chimie Analytique et Electrochimie (LR99ES15), Departement de Chimie, Faculté des Sciences de Tunis, Université de Tunis El Manar Tunis El Manar 2092 Tunisia
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University Dammam 31113 Saudi Arabia
| | - Sarah Aldulaijan
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University Dammam 31113 Saudi Arabia
| | - Fayçal Raouafi
- Institut Préparatoire aux Etudes Scientifiques et Techniques (IPEST), Université de Carthage La Marsa Tunisia
| | - Rafaa Besbes
- Laboratoire de Chimie Analytique et Electrochimie (LR99ES15), Departement de Chimie, Faculté des Sciences de Tunis, Université de Tunis El Manar Tunis El Manar 2092 Tunisia
| | - Luca Sementa
- Consiglio Nazionale delle Ricerche, CNR-ICCOM & IPCF Pisa 56124 Italy
| | | | - Noureddine Raouafi
- Laboratoire de Chimie Analytique et Electrochimie (LR99ES15), Departement de Chimie, Faculté des Sciences de Tunis, Université de Tunis El Manar Tunis El Manar 2092 Tunisia
| | - Adnene Dhouib
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University Dammam 31113 Saudi Arabia
| |
Collapse
|
11
|
Beitollahi H, Khalilzadeh MA, Tajik S, Safaei M, Zhang K, Jang HW, Shokouhimehr M. Recent Advances in Applications of Voltammetric Sensors Modified with Ferrocene and Its Derivatives. ACS OMEGA 2020; 5:2049-2059. [PMID: 32064365 PMCID: PMC7016907 DOI: 10.1021/acsomega.9b03788] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/17/2020] [Indexed: 05/05/2023]
Abstract
This study is on current developments concerning ferrocene (FC) and its derivatives on the basis of electrochemical biosensors and sensors. The distinct physiochemical characteristics of FC have enabled the development of new sensor devices, specifically electrochemical sensors. Several articles have focused on the implementation of FC as an electrode constituent while discussing its electrochemical behavior. Furthermore, typical FC-design-based biosensors and sensors are considered as well as practical examples. The favorable design of FC-based biosensors and general sensors needs adequate control of their chemical and physical characteristics in addition to their surface immobilization and functionalization.
Collapse
Affiliation(s)
- Hadi Beitollahi
- Environment
Department, Institute of Science and High Technology and Environmental
Sciences, Graduate University of Advanced
Technology, Kerman, Iran
- E-mail: (H.W.J.)
| | - Mohammad A. Khalilzadeh
- Department
of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Somayeh Tajik
- Research
Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohadeseh Safaei
- Environment
Department, Institute of Science and High Technology and Environmental
Sciences, Graduate University of Advanced
Technology, Kerman, Iran
| | - Kaiqiang Zhang
- Department
of Materials Science and Engineering, Research Institute of Advanced
Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho Won Jang
- Department
of Materials Science and Engineering, Research Institute of Advanced
Materials, Seoul National University, Seoul 08826, Republic of Korea
- E-mail: (H. W. Jang)
| | - Mohammadreza Shokouhimehr
- Department
of Materials Science and Engineering, Research Institute of Advanced
Materials, Seoul National University, Seoul 08826, Republic of Korea
- E-mail: (M.S.)
| |
Collapse
|
12
|
Li D, Wang T, Li Z, Xu X, Wang C, Duan Y. Application of Graphene-Based Materials for Detection of Nitrate and Nitrite in Water-A Review. SENSORS 2019; 20:s20010054. [PMID: 31861855 PMCID: PMC6983230 DOI: 10.3390/s20010054] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022]
Abstract
Nitrite and nitrate are widely found in various water environments but the potential toxicity of nitrite and nitrate poses a great threat to human health. Recently, many methods have been developed to detect nitrate and nitrite in water. One of them is to use graphene-based materials. Graphene is a two-dimensional carbon nano-material with sp2 hybrid orbital, which has a large surface area and excellent conductivity and electron transfer ability. It is widely used for modifying electrodes for electrochemical sensors. Graphene based electrochemical sensors have the advantages of being low cost, effective and efficient for nitrite and nitrate detection. This paper reviews the application of graphene-based nanomaterials for electrochemical detection of nitrate and nitrite in water. The properties and advantages of the electrodes were modified by graphene, graphene oxide and reduced graphene oxide nanocomposite in the development of nitrite sensors are discussed in detail. Based on the review, the paper summarizes the working conditions and performance of different sensors, including working potential, pH, detection range, detection limit, sensitivity, reproducibility, repeatability and long-term stability. Furthermore, the challenges and suggestions for future research on the application of graphene-based nanocomposite electrochemical sensors for nitrite detection are also highlighted.
Collapse
Affiliation(s)
- Daoliang Li
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Correspondence:
| | - Tan Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
| | - Zhen Li
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
| | - Xianbao Xu
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
| | - Cong Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
| | - Yanqing Duan
- Business school, University of Bedfordshire, Luton LU1 3BE, UK;
| |
Collapse
|
13
|
|
14
|
Recent developments in carbon nanomaterial-enabled electrochemical sensors for nitrite detection. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.01.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Xi R, Zhang SH, Zhang L, Wang C, Wang LJ, Yan JH, Pan GB. Electrodeposition of Pd-Pt Nanocomposites on Porous GaN for Electrochemical Nitrite Sensing. SENSORS (BASEL, SWITZERLAND) 2019; 19:E606. [PMID: 30709039 PMCID: PMC6387133 DOI: 10.3390/s19030606] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 11/16/2022]
Abstract
In recent years, nitrite pollution has become a subject of great concern for human lives, involving a number of fields, such as environment, food industry and biological process. However, the effective detection of nitrite is an instant demand as well as an unprecedented challenge. Here, a novel nitrite sensor was fabricated by electrochemical deposition of palladium and platinum (Pd-Pt) nanocomposites on porous gallium nitride (PGaN). The obtained Pd-Pt/PGaN sensor provides abundant electrocatalytic sites, endowing it with excellent performances for nitrite detection. The sensor also shows a low detection limit of 0.95 µM, superior linear ampere response and high sensitivity (150 µA/mM for 1 to 300 µM and 73 µA/mM for 300 to 3000 µM) for nitrite. In addition, the Pd-Pt/PGaN sensor was applied and evaluated in the determination of nitrite from the real environmental samples. The experimental results demonstrate that the sensor has good reproducibility and long-term stability. It provides a practical way for rapidly and effectively monitoring nitrite content in the practical application.
Collapse
Affiliation(s)
- Rui Xi
- College of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China.
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Shao-Hui Zhang
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Long Zhang
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Chao Wang
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Lu-Jia Wang
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Jing-Hui Yan
- College of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China.
| | - Ge-Bo Pan
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
16
|
Rabti A, Hannachi A, Maghraoui-Meherzi H, Raouafi N. Ferrocene–Functionalized Carbon Nanotubes: An Adsorbent for Rhodamine B. CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s42250-018-00031-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Ning J, Luo X, Wang M, Li J, Liu D, Rong H, Chen D, Wang J. Ultrasensitive Electrochemical Sensor Based on Polyelectrolyte Composite Film Decorated Glassy Carbon Electrode for Detection of Nitrite in Curing Food at Sub-Micromolar Level. Molecules 2018; 23:molecules23102580. [PMID: 30304828 PMCID: PMC6222513 DOI: 10.3390/molecules23102580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/28/2018] [Accepted: 10/05/2018] [Indexed: 01/26/2023] Open
Abstract
To ensure food quality and safety, developing cost-effective, rapid and precision analytical techniques for quantitative detection of nitrite is highly desirable. Herein, a novel electrochemical sensor based on the sodium cellulose sulfate/poly (dimethyl diallyl ammonium chloride) (NaCS/PDMDAAC) composite film modified glass carbon electrode (NaCS/PDMDAAC/GCE) was proposed toward the detection of nitrite at sub-micromolar level, aiming to make full use of the inherent properties of individual component (biocompatible, low cost, good electrical conductivity for PDMDAAC; non-toxic, abundant raw materials, good film forming ability for NaCS) and synergistic enhancement effect. The NaCS/PDMDAAC/GCE was fabricated by a simple drop-casting method. Electrochemical behaviors of nitrite at NaCS/PDMDAAC/GCE were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under optimum conditions, the NaCS/PDMDAAC/GCE exhibits a wide linear response region of 4.0 × 10−8 mol·L−1~1.5 × 10−4 mol·L−1 and a low detection 1imit of 43 nmol·L−1. The NaCS/PDMDAAC shows a synergetic enhancement effect toward the oxidation of nitrite, and the sensing performance is much better than the previous reports. Moreover, the NaCS/PDMDAAC also shows good stability and reproducibility. The NaCS/PDMDAAC/GCE was successfully applied to the determination of nitrite in ham sausage with satisfactory results.
Collapse
Affiliation(s)
- Jingheng Ning
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410110, China.
| | - Xin Luo
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410110, China.
| | - Min Wang
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410110, China.
| | - Jiaojiao Li
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410110, China.
| | - Donglin Liu
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410110, China.
| | - Hou Rong
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410110, China.
| | - Donger Chen
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410110, China.
| | - Jianhui Wang
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410110, China.
| |
Collapse
|
18
|
Caetano LP, Lima AP, Tormin TF, Richter EM, Espindola FS, Botelho FV, Munoz RAA. Carbon-nanotube Modified Screen-printed Electrode for the Simultaneous Determination of Nitrite and Uric Acid in Biological Fluids Using Batch-injection Amperometric Detection. ELECTROANAL 2018. [DOI: 10.1002/elan.201800189] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Larissa P. Caetano
- Federal University of Uberlândia, Institute of Biotechnology; 38400-902 Uberlândia, MG Brazil
| | - Ana P. Lima
- Federal University of Uberlândia, Institute of Chemistry; 38400-902 Uberlândia, MG Brazil
| | - Thiago F. Tormin
- Federal University of Uberlândia, Institute of Chemistry; 38400-902 Uberlândia, MG Brazil
| | - Eduardo M. Richter
- Federal University of Uberlândia, Institute of Chemistry; 38400-902 Uberlândia, MG Brazil
| | - Foued S. Espindola
- Federal University of Uberlândia, Institute of Biotechnology; 38400-902 Uberlândia, MG Brazil
| | - Françoise V. Botelho
- Federal University of Uberlândia, Institute of Biotechnology; 38400-902 Uberlândia, MG Brazil
| | - Rodrigo A. A. Munoz
- Federal University of Uberlândia, Institute of Chemistry; 38400-902 Uberlândia, MG Brazil
| |
Collapse
|
19
|
Ranjani B, Kalaiyarasi J, Pavithra L, Devasena T, Pandian K, Gopinath SCB. Amperometric determination of nitrite using natural fibers as template for titanium dioxide nanotubes with immobilized hemin as electron transfer mediator. Mikrochim Acta 2018; 185:194. [DOI: 10.1007/s00604-018-2715-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/26/2018] [Indexed: 02/06/2023]
|
20
|
|
21
|
Muthumariappan A, Govindasamy M, Chen SM, Sakthivel K, Mani V. Screen-printed electrode modified with a composite prepared from graphene oxide nanosheets and Mn3O4 microcubes for ultrasensitive determination of nitrite. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2379-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
A nanocomposite consisting of flower-like cobalt nanostructures, graphene oxide and polypyrrole for amperometric sensing of nitrite. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2247-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Chen L, Liu X, Wang C, Lv S, Chen C. Amperometric nitrite sensor based on a glassy carbon electrode modified with electrodeposited poly(3,4-ethylenedioxythiophene) doped with a polyacenic semiconductor. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2189-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
24
|
A glassy carbon electrode modified with poly(3,4-ethylenedioxythiophene) doped with nano-sized hydroxyapatite for amperometric determination of nitrite. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2180-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|