1
|
Presnova GV, Zhdanov GA, Filatova LY, Ulyashova MM, Presnov DE, Rubtsova MY. Improvement of Seed-Mediated Growth of Gold Nanoparticle Labels for DNA Membrane-Based Assays. BIOSENSORS 2022; 13:2. [PMID: 36671837 PMCID: PMC9855534 DOI: 10.3390/bios13010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/03/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Gold nanoparticles (AuNPs) are popular labels for colorimetric detection of various analytes, involving proteins, nucleic acids, viruses, and whole cells because of their outstanding optical properties, inertness, and modification variability. In this work, we present an improved approach for enhancement of color intensity for DNA membrane microarrays based on seed-mediated growth of AuNP labels. Biotin-labeled DNA is hybridized with capture oligonucleotide probes immobilized on the microarrays. Then biotin is revealed by a streptavidin-AuNP conjugate followed by the detection of AuNPs. Optimization of seed-mediated enlargement of AuNPs by the reduction of tetrachloroauric acid with hydroxylamine made it possible to change the coloring of specific spots on the microarrays from pink to a more contrasting black with minor background staining. Mean size of the resulting AuNPs was four times larger than before the enhancement. Adjusting the pH of HAuCl4 solution to 3.5 and use of a large excess of hydroxylamine increased the signal/background ratio by several times. The method's applicability was demonstrated for quantification of a short oligonucleotide of 19 bases and full-length TEM-type β-lactamase genes of 860 bp responsible for the development of bacterial resistance against β-lactam antibiotics. Improved protocol for AuNP enlargement may be further transferred to any other membrane-based assays of nucleic acids with both instrumental and visual colorimetric detection.
Collapse
Affiliation(s)
- Galina V. Presnova
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Gleb A. Zhdanov
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Luibov Yu. Filatova
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Mariya M. Ulyashova
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Denis E. Presnov
- D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
- MSU Quantum Technology Centre, 119991 Moscow, Russia
- Cryoelectronics Lab, Faculty of Physics, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Maya Yu. Rubtsova
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
2
|
Multi-Factors Cooperatively Actuated Photonic Hydrogel Aptasensors for Facile, Label-Free and Colorimetric Detection of Lysozyme. BIOSENSORS 2022; 12:bios12080662. [PMID: 36005058 PMCID: PMC9406194 DOI: 10.3390/bios12080662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022]
Abstract
Responsive two-dimensional photonic crystal (2DPC) hydrogels have been widely used as smart sensing materials for constructing various optical sensors to accurately detect different target analytes. Herein, we report photonic hydrogel aptasensors based on aptamer-functionalized 2DPC poly(acrylamide-acrylic acid-N-tert-butyl acrylamide) hydrogels for facile, label-free and colorimetric detection of lysozyme in human serum. The constructed photonic hydrogel aptasensors undergo shrinkage upon exposure to lysozyme solution through multi-factors cooperative actuation. Here, the specific binding between the aptamer and lysozyme, and the simultaneous interactions between carboxyl anions and N-tert-butyl groups with lysozyme, increase the cross-linking density of the hydrogel, leading to its shrinkage. The aptasensors’ shrinkage decreases the particle spacing of the 2DPC embedded in the hydrogel network. It can be simply monitored by measuring the Debye diffraction ring of the photonic hydrogel aptasensors using a laser pointer and a ruler without needing sophisticated apparatus. The significant shrinkage of the aptasensors can be observed by the naked eye via the hydrogel size and color change. The aptasensors show good sensitivity with a limit of detection of 1.8 nM, high selectivity and anti-interference for the detection of lysozyme. The photonic hydrogel aptasensors have been successfully used to accurately determine the concentration of lysozyme in human serum. Therefore, novel photonic hydrogel aptasensors can be constructed by designing functional monomers and aptamers that can specifically bind target analytes.
Collapse
|
3
|
Sahu S, Reshma, Sharma S, Karbhal I, Ghosh KK. Thermodynamic investigation of the interaction between ionic liquid functionalized gold nanoparticles and human serum albumin for selective determination of glutamine. RSC Adv 2020; 10:31400-31410. [PMID: 35520687 PMCID: PMC9056378 DOI: 10.1039/d0ra04394j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
The excellent biocompatible and monodispersed gold nanoparticles (AuNPs) functionalized by amino based ionic liquid (IL) have been synthesized for the demonstration of their interaction with human serum albumin (HSA). Amino based IL stabilizes the surface of AuNPs and provides a colorimetric sensor platform. The size of synthesized IL–AuNPs was identified by use of transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques. Molecular interaction of functionalized AuNPs with HSA have been investigated using multispectroscopic techniques, such as UV-Vis, fluorescence and Fourier transform infra-red (FT-IR) spectroscopy. The fluorescence and synchronous fluorescent intensity together indicated that IL–AuNPs exhibits a strong ability to quench the intrinsic fluorescence of HSA via a dynamic quenching mechanism. Moreover, the binding constant (Ka), Stern–Volmer quenching constant (KSV) and different thermodynamic parameters, namely Gibb's free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) have been evaluated at different temperatures. This interactive study focuses on the nature of surface modification of IL–AuNPs via HSA for selective detection of glutamine (Glu) with a lower limit of detection of 0.67 nM in the linear range of 10–100 nM for Glu. The excellent biocompatible and monodispersed gold nanoparticles (AuNPs) functionalized by amino based ionic liquid (IL) have been synthesized for the demonstration of their interaction with human serum albumin (HSA).![]()
Collapse
Affiliation(s)
- Sushama Sahu
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492010
- India
| | - Reshma
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492010
- India
| | - Srishti Sharma
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492010
- India
| | - Indrapal Karbhal
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492010
- India
| | - Kallol K. Ghosh
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur-492010
- India
| |
Collapse
|
4
|
Recent advances in metallic nanobiosensors development: Colorimetric, dynamic light scattering and fluorescence detection. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100049] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Chang CC, Chen CP, Wu TH, Yang CH, Lin CW, Chen CY. Gold Nanoparticle-Based Colorimetric Strategies for Chemical and Biological Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E861. [PMID: 31174348 PMCID: PMC6631916 DOI: 10.3390/nano9060861] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/18/2022]
Abstract
Gold nanoparticles are popularly used in biological and chemical sensors and their applications owing to their fascinating chemical, optical, and catalytic properties. Particularly, the use of gold nanoparticles is widespread in colorimetric assays because of their simple, cost-effective fabrication, and ease of use. More importantly, the gold nanoparticle sensor response is a visual change in color, which allows easy interpretation of results. Therefore, many studies of gold nanoparticle-based colorimetric methods have been reported, and some review articles published over the past years. Most reviews focus exclusively on a single gold nanoparticle-based colorimetric technique for one analyte of interest. In this review, we focus on the current developments in different colorimetric assay designs for the sensing of various chemical and biological samples. We summarize and classify the sensing strategies and mechanism analyses of gold nanoparticle-based detection. Additionally, typical examples of recently developed gold nanoparticle-based colorimetric methods and their applications in the detection of various analytes are presented and discussed comprehensively.
Collapse
Affiliation(s)
- Chia-Chen Chang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan.
| | - Chie-Pein Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei 104, Taiwan.
| | - Tzu-Heng Wu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.
| | - Ching-Hsu Yang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.
| | - Chii-Wann Lin
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan.
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.
- Department of Biomedical Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Chen-Yu Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei 104, Taiwan.
| |
Collapse
|
6
|
Rezaei B, Jamei HR, Ensafi AA. Lysozyme aptasensor based on a glassy carbon electrode modified with a nanocomposite consisting of multi-walled carbon nanotubes, poly(diallyl dimethyl ammonium chloride) and carbon quantum dots. Mikrochim Acta 2018; 185:180. [PMID: 29594452 DOI: 10.1007/s00604-017-2656-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/29/2017] [Indexed: 12/25/2022]
Abstract
An aptamer-based method is described for electrochemical determination of lysozyme. A glassy carbon electrode was modified with a nanocomposite composed of multi-walled carbon nanotubes, poly(diallyl dimethyl ammonium chloride), and carbon quantum dots. The composition of the nanocomposite (MWCNT/PDDA/CQD) warrants good electrical conductivity and a high surface-to-volume ratio. The lysozyme-binding aptamers were immobilized on the nanocomposite via covalent coupling between the amino groups of the aptamer and the carboxy groups of the nanocomposite. The modified electrode was characterized by electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry. The use of this nanocomposite results in a considerable enhancement of the electrochemical signal and contributes to improving sensitivity. Hexacyanoferrate was used as an electrochemical probe to study the dependence of the peak current on lysozyme concentration. In the presence of lysozyme, the interaction of lysozyme with immobilized aptamer results in a decrease of the peak current, best measured at +0.15 V vs. Ag/AgCl. A plot of peak current changes versus the logarithm of the lysozyme concentration is linear in the 50 fmol L-1 to 10 nmol L-1 concentration range, with a 12.9 fmol L-1 detection limit (at an S/N ratio of 3). The method is highly reproducible, specific and sensitive, and the electrode has a rapid response. It was applied to the determination of lysozyme in egg white, serum, and urine. Graphical abstract Schematic of a nanocomposite composed of multi-walled carbon nanotubes (MWCNTs), poly(diallyldimethyl ammonium chloride) (PDDA), and carbon quantum dots (CQDs) for use in a lysozyme aptasensor. The aptamer was immobilized on the surface, and bovine serum albumin (BSA) was applied to block the surface. The changes of peak current for the electrochemical probe hexacyanoferrate (Fe(CN)63-/4-) in the presence and absence of lysozyme was traced.
Collapse
Affiliation(s)
- Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111 I.R., Iran.
| | - Hamid Reza Jamei
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111 I.R., Iran
| | - Ali Asghar Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111 I.R., Iran
| |
Collapse
|
7
|
Alula MT, Karamchand L, Hendricks NR, Blackburn JM. Citrate-capped silver nanoparticles as a probe for sensitive and selective colorimetric and spectrophotometric sensing of creatinine in human urine. Anal Chim Acta 2017; 1007:40-49. [PMID: 29405987 DOI: 10.1016/j.aca.2017.12.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/06/2017] [Indexed: 11/28/2022]
Abstract
Urinary creatinine concentration is a critical physiological parameter that enables reliable assessment of patient renal function and diagnosis of a broad spectrum of diseases. In this study, a simple and inexpensive sensor comprising monodisperse, citrate-capped silver nanoparticles (cc-AgNPs) was developed, which enabled rapid, sensitive and selective quantitation of creatinine directly in unprocessed urine. The mechanism of this sensor entails the creatinine-mediated aggregation of the cc-AgNPs (within 1 min) under alkaline conditions (pH 12). This is attributed to the tautomerization of creatinine to its amino anionic species at alkaline pH, which cross-link the cc-AgNPs via hydrogen bond networks with the negatively charged citrate caps. Creatinine elicited visibly-discernable color changes of the cc-AgNPs colloids in a concentration-dependent manner up to 10 μM. UV-visible spectroscopic analyses of the cc-AgNPs revealed that creatinine elicited a concentration-dependent decrease in intensity of the localized surface plasmon resonance (LSPR) band centered around 403 nm, with a concomitant increase in intensity of the red-shifted LSPR band at 670 nm. This observation denotes a creatinine-mediated increase in cc-AgNP particle size via aggregation, as confirmed by transmission electron microscopy analysis. The cc-AgNP sensor exhibited a linear correlation between the A670/A403 extinction ratio and creatinine concentration range of 0-4.2 μM in aqueous solutions (R2 = 0.996), and a low detection limit of 53.4 nM. Hence, the simplicity, short assay time, and high sensitivity and selectivity of our cc-AgNP sensor affirms its utility as a creatinine monitoring assay for low-resource, point-of-care settings.
Collapse
Affiliation(s)
- Melisew Tadele Alula
- College of Sciences, Department of Chemical and Forensic Sciences, Botswana International University of Science and Technology, Plot 10071, Private Bag 16, Palapye, Botswana
| | - Leshern Karamchand
- Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Nicolette R Hendricks
- Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Jonathan M Blackburn
- Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7925, South Africa.
| |
Collapse
|