1
|
Liu X, Lian J, Fan Y, Liu Z, Li H, Liu Q, Yue K. Si doping and perylene diimide modification contributed to enhancement of peroxidase-like activity of ceria for constructing colorimetric sensing platform of hydroquinone. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
2
|
3D Prussian blue/Pt decorated carbon nanofibers based screen-printed microchips for the ultrasensitive hydroquinone biosensing. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Abu Nayem SM, Shaheen Shah S, Sultana N, Abdul Aziz M, Saleh Ahammad AJ. Electrochemical Sensing Platforms of Dihydroxybenzene: Part 2 – Nanomaterials Excluding Carbon Nanotubes and Graphene. CHEM REC 2021; 21:1073-1097. [DOI: 10.1002/tcr.202100044] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/30/2021] [Indexed: 12/18/2022]
Affiliation(s)
- S. M. Abu Nayem
- Department of Chemistry Jagannath University 1100 Dhaka Bangladesh
| | - Syed Shaheen Shah
- Center of Research Excellence in Nanotechnology King Fahd University of Petroleum & Minerals KFUPM Box 5040 31261 Dhahran Saudi Arabia
- Physics Department King Fahd University of Petroleum & Minerals KFUPM Box 5047 31261 Dhahran Saudi Arabia
| | - Nasrin Sultana
- Department of Chemistry Jagannath University 1100 Dhaka Bangladesh
| | - Md. Abdul Aziz
- Center of Research Excellence in Nanotechnology King Fahd University of Petroleum & Minerals KFUPM Box 5040 31261 Dhahran Saudi Arabia
| | | |
Collapse
|
4
|
Borthakur P, Boruah PK, Das P, Das MR. CuS nanoparticles decorated MoS 2 sheets as an efficient nanozyme for selective detection and photocatalytic degradation of hydroquinone in water. NEW J CHEM 2021. [DOI: 10.1039/d1nj00856k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cost effective and efficient CuS–MoS2 nanocomposite with enhanced peroxidase enzyme mimetics and photocatalytic activity was synthesized by simple hydrothermal method and successfully utilized for sensing and detection of toxic hydroquinone molecules in aqueous medium.
Collapse
Affiliation(s)
- Priyakshree Borthakur
- Materials Sciences and Technology Division
- CSIR-North East Institute of Science and Technology
- Jorhat 785006
- India
- Academy of Scientific and Innovative Research
| | - Purna K. Boruah
- Materials Sciences and Technology Division
- CSIR-North East Institute of Science and Technology
- Jorhat 785006
- India
- Academy of Scientific and Innovative Research
| | - Punamshree Das
- Materials Sciences and Technology Division
- CSIR-North East Institute of Science and Technology
- Jorhat 785006
- India
- Academy of Scientific and Innovative Research
| | - Manash R. Das
- Materials Sciences and Technology Division
- CSIR-North East Institute of Science and Technology
- Jorhat 785006
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
5
|
Song KL, Li R, Li K, Yu H. Simultaneous determination of dihydroxybenzene isomers using a three-dimensional over-oxidized polypyrrole–reduced graphene oxide composite film electrode prepared by an electrochemical method. NEW J CHEM 2020. [DOI: 10.1039/d0nj01613f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A 3D-over-oxidized polypyrrole–reduced graphene oxide composite film was prepared by an electrochemical procedure, which showed high electrochemical activity and good selectivity for simultaneous determination of dihydroxybenzene isomers.
Collapse
Affiliation(s)
- Kai-li Song
- College of Chemistry and Chemical Engineering
- Yan'an University
- Yan'an
- China
| | - Rui Li
- College of Chemistry and Chemical Engineering
- Yan'an University
- Yan'an
- China
| | - Kun Li
- College of Chemistry and Chemical Engineering
- Yan'an University
- Yan'an
- China
| | - Hao Yu
- College of Chemistry and Chemical Engineering
- Yan'an University
- Yan'an
- China
- Yan'an Key Laboratory of Analytical Technology and Detection
| |
Collapse
|
6
|
Guo H, Shen Y, Ouyang H, Long Y, Li W. A voltammetric sensor for simultaneous determination of hydroquinone and catechol by using a heterojunction prepared from gold nanoparticle and graphitic carbon nitride. Mikrochim Acta 2019; 186:819. [PMID: 31748881 DOI: 10.1007/s00604-019-3798-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/07/2019] [Indexed: 01/23/2023]
Abstract
An electrochemical sensor is described for the simultaneous determination of hydroquinone (HQ) and catechol (CC) based on a nanocomposite consisting of gold nanoparticles and graphitic carbon nitride (g-C3N4). The nanocomposite was synthesized via one-step thermal polymerization route and characterized by X-ray diffraction, transmission electron microscopy, and Fourier transform infrared techniques. The results confirmed the close contact between gold nanoparticles and g-C3N4. The nanocomposites exhibited the enhanced electrocatalytic redox towards HQ and CC. A glassy carbon electrode was modified with the nanocomposite to obtain a sensor that exhibited favorable analytical properties in the simultaneous detection of HQ and CC, with voltammetric peaks typically near -0.14 and - 0.02 V (vs. saturated calomel electrode). Linear responses are found between 1.0 and 320 μM for HQ (with a 0.3 μM detection limit; at S/N = 3), and between 0.1 and 320 μM for CC (with a 0.04 μM detection limit; at S/N = 3). The sensor was applied for the simultaneous determination of HQ and CC in spiked water samples, and acceptable recoveries were achieved. The superior sensing properties of the electrode are attributed to the synergy between the microstructure (heterojunction and porosity) and the π interactions between phenolic isomers and g-C3N4. Graphical abstractA novel electrochemical sensor is demonstrated for the simultaneous determination of hydroquinone and catechol based on a nanocomposite consisting of gold nanoparticles (AuNPs) and graphitic carbon nitride (g-C3N4).
Collapse
Affiliation(s)
- Hua Guo
- College of Chemistry, Chemical engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - YanLing Shen
- College of Chemistry, Chemical engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Huiying Ouyang
- College of Chemistry, Chemical engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Yumei Long
- College of Chemistry, Chemical engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China. .,The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China.
| | - Weifeng Li
- College of Chemistry, Chemical engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China.
| |
Collapse
|
7
|
LIU HY, ZHU LL, HUANG ZH, QIU YB, XU HX, WEN JJ, XIONG WW, LI LH, GU CC. Simultaneous Detection of Hydroquinone, Catechol and Resorcinol by an Electrochemical Sensor Based on Ammoniated-Phosphate Buffer Solution Activated Glassy Carbon Electrode. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61183-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
3D-Flower-Like Copper Sulfide Nanoflake-Decorated Carbon Nanofragments-Modified Glassy Carbon Electrodes for Simultaneous Electrocatalytic Sensing of Co-existing Hydroquinone and Catechol. SENSORS 2019; 19:s19102289. [PMID: 31108985 PMCID: PMC6567201 DOI: 10.3390/s19102289] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 02/04/2023]
Abstract
A copper sulfide nanoflakes-decorated carbon nanofragments-modified glassy carbon electrode (CuS-CNF/GCE) was fabricated for the electrocatalytic differentiation and determination of hydroquinone (HQ) and catechol (CC). The physicochemical properties of the CuS-CNF were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. The electrocatalytic determination of HQ and CC over the CuS-CNF/GCE was evaluated by cyclic voltammetry and differential pulse voltammetry. An excellent detection limit and sensitivity of the CuS-CNF/GCE are obtained (0.293 µM and 0.259 µM) with a sensitivity of 184 nA µM−1 cm−2 and 208 nA µM−1 cm−2 (S/N=3) for HQ and CC, respectively. In addition, the CuS-CNF/GCE shows a selective identification of HQ and CC over potential interfering metal ions (Zn2+, Na+, K+, NO3−, SO42−, Cl−) and organic compounds (ascorbic acid, glucose), and a satisfactory recovery is also obtained in the spiked water samples. These results suggest that the CuS-CNF/GCE can be used as an efficient electrochemical sensor for the simultaneous determination of co-existing environmental pollutants such as HQ and CC in water environments with high selectivity and acceptable reproducibility.
Collapse
|
9
|
Sensitive electrochemical detection of gp120 based on the combination of NBD-556 and gp120. Talanta 2018; 196:486-492. [PMID: 30683395 DOI: 10.1016/j.talanta.2018.12.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/05/2018] [Accepted: 12/21/2018] [Indexed: 11/22/2022]
Abstract
As is known, the employment of molecular imprinting polymer (MIP) as specific sensing materials in sensors, namely MIP-based sensors. In this contribution, we devised a MIP electrochemical sensor for the detection of variable-format conformations protein gp120. The sensor was constructed by using a grapheme-like carbon nanfragment (CNF) and bismuth oxides composites (CNF-Bi) as decoration material, small-molecule entry inhibitor NBD-556 and gp120 conjugates NBD-556@gp120 instead of gp120 as the template, and pyrrole as an electropolymerization monomer. Cyclic voltammetry, differential pulse voltammetry, scanning electron microscopy and transmission electron microscope were used to characterize the preparation process of the sensor. Results showing that, under optimized conditions, the introduction of NBD-556 make the specific recognition and analytical properties of the MIP sensor towards gp120 more efficient. The response currents were proportional to the NBD-556@gp120 concentrations in the range of 0.0002 ng mL-1 to 200 ng mL-1 with the detection limit of 0.0003 ng mL-1 based on S/N = 3. Meanwhile, the NBD-556@gp120 based MIP sensor also shows acceptable stability and reproducibility. When used for the detection of gp120 in human plasma, it also showed good accuracy. This research idea is in great promising for the early diagnosis of HIV-1 virus and can also be extended to the detection of other conformationally unstable proteins.
Collapse
|
10
|
Manavalan S, Govindasamy M, Chen SM, Rajaji U, Chen TW, Ajmal Ali M, Al-Hemaid F, Elshikh M, Abul Farah M. Reduced graphene oxide supported raspberry-like SrWO4 for sensitive detection of catechol in green tea and drinking water samples. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
George JM, Antony A, Mathew B. Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Mikrochim Acta 2018; 185:358. [DOI: 10.1007/s00604-018-2894-3] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/26/2018] [Indexed: 12/25/2022]
|
12
|
Amperometric determination of hydroquinone and catechol using a glassy carbon electrode modified with a porous carbon material doped with an iron species. Mikrochim Acta 2017; 185:37. [PMID: 29594535 DOI: 10.1007/s00604-017-2538-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022]
Abstract
A porous carbon material doped with an iron species (Fe/PC) was prepared by carbonizing a mixture of zeolitic imidazolate framework-8 in the presence of iron(II) ions. The resulting material was characterized by X-ray diffraction, nitrogen adsorption isotherms, transmission electron microscopy, and by Raman and X-ray photoelectron spectroscopy. Fe/PC was the deposited on the surface of glassy carbon electrode (GCE) to obtain a sensor for amperometric determination of phenolic compounds. The unique catalytic activity, good electrical conductivity and hierarchical structure of the Fe/PC composite results in good electrooxidative activity towards hydroquinone (HQ; typically at 44 mV) and catechol (CC; typically at 160 mV). Under optimal conditions, the amperometric responses are linear in the range from 0.1 to 120 μmol · L-1 for HQ, and from 1.0 to 120 μmol · L-1 for CC. The respective detection limits are 14 and 33 nmol · L-1. The sensor is highly selective against potential interferents and was successfully applied to the determination of HQ and CC contents in (spiked) water samples. Graphical abstract An amperometric sensor for phenolic compounds was constructed by using a metal-organic framework derived iron doped porous carbon material.
Collapse
|
13
|
Ramaraj S, Mani S, Chen SM, Kokulnathan T, Lou BS, Ali MA, Hatamleh AA, Al-Hemaid FMA. Synthesis and application of bismuth ferrite nanosheets supported functionalized carbon nanofiber for enhanced electrochemical detection of toxic organic compound in water samples. J Colloid Interface Sci 2017; 514:59-69. [PMID: 29245073 DOI: 10.1016/j.jcis.2017.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/02/2017] [Accepted: 12/05/2017] [Indexed: 01/04/2023]
Abstract
Recently, the multiferroic material has fabulous attention in numerous applications owing to its excellent electronic conductivity, unique mechanical property, and higher electrocatalytic activity, etc. In this paper, we reported that the synthesis of bismuth ferrite (BiFeO3) nanosheets integrated functionalized carbon nanofiber (BiFeO3 NS/F-CNF) nanocomposite using a simple hydrothermal technique. Herein, the structural changes and crystalline property of prepared BiFeO3 NS/F-CNF nanocomposite were characterized using Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). From this detailed structural evolution, the formation of nanosheets like BiFeO3 and its nanocomposite with F-CNF were scrutinized and reported. Furthermore, the as-prepared BiFeO3 NS/F-CNF nanocomposite modified glassy carbon electrode (GCE) was applied for electrochemical detection of catechol (CC). As expected, BiFeO3 NS/F-CNF/GCE shows excellent electrocatalytic activity as well as 3.44 (F-CNF/GCE) and 7.92 (BiFeO3 NS/GCE) fold higher electrochemical redox response for CC sensing. Moreover, the proposed sensor displays a wide linear range from 0.003 to 78.02 µM with a very low detection limit of 0.0015 µM. In addition, we have validated the real-time application of our developed CC sensor in different water samples.
Collapse
Affiliation(s)
- Sukanya Ramaraj
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan, ROC
| | - Sakthivel Mani
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan, ROC
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan, ROC.
| | - Thangavelu Kokulnathan
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan, ROC
| | - Bih-Show Lou
- Chemistry Division, Center for General Education, Chang Gung University, Taoyuan 333, Taiwan, ROC; Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, ROC.
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - A A Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad M A Al-Hemaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
14
|
Robak J, Węgiel K, Burnat B, Skrzypek S. A carbon ceramic electrode modified with bismuth oxide nanoparticles for determination of syringic acid by stripping voltammetry. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2504-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Shen Y, Rao D, Sheng Q, Zheng J. Simultaneous voltammetric determination of hydroquinone and catechol by using a glassy carbon electrode modified with carboxy-functionalized carbon nanotubes in a chitosan matrix and decorated with gold nanoparticles. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2392-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Flexible liquid crystal polymer-based electrochemical sensor for in-situ detection of zinc(II) in seawater. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2280-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Elancheziyan M, Manoj D, Saravanakumar D, Thenmozhi K, Senthilkumar S. Amperometric sensing of catechol using a glassy carbon electrode modified with ferrocene covalently immobilized on graphene oxide. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2312-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Buleandra M, Rabinca AA, Badea IA, Balan A, Stamatin I, Mihailciuc C, Ciucu AA. Voltammetric determination of dihydroxybenzene isomers using a disposable pencil graphite electrode modified with cobalt-phthalocyanine. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2153-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|