1
|
Muthukumaran MK, Govindaraj M, Raja BK, J AS. Crystal plane-integrated strontium oxide/hexagonal boron nitride nanohybrids for rapid electrochemical sensing of anticancer drugs in human blood serum samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5639-5654. [PMID: 37855090 DOI: 10.1039/d3ay01493b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
In this work, the crystal plane of strontium oxide (SrO) nanorods was integrated into hexagonal-boron nitride (h-BN) nanosheets to form 1D-2D (SrO/h-BN) composite were utilized for the electrochemical detection of the chemotherapeutic drug 5-fluorouracil (5-Fu). 5-Fu is a clinically proven and the third most frequently applied chemotherapeutic drug for treating solid tumours, such as colorectal, stomach, cutaneous and breast malignancies. Its overdoses lead to toxic metabolite accumulation that has serious adverse consequences on humans, including neurotoxicity, death and the induction of morbidity. Therefore, to improve the chemotherapy and predict the potential adverse effects of 5-Fu residues in the human body, susceptible and quick analytical methods for detecting 5-Fu in human body fluids (blood serum/plasma and urine) are needed. The effective interaction of the synthesized SrO/h-BN composite shows increased efficiency for the electrochemical detection of 5-Fu with good selectivity. Notably, a simple sonochemical method achieved a synergistic interaction between the (100) plane of SrO and the (002) plane of h-BN. Various analytical and spectroscopic techniques were used to characterize the SrO/h-BN nanocomposite, which provided useful insights into the composition and properties of the composite material. The crystalline, structural and chemical characteristics of the as-synthesized material were characterized by XRD, Raman spectroscopy, HR-TEM, XPS and HR-SEM. Furthermore, the proposed electrode's electrochemical sensing capability was analysed using CV, EIS, DPV and i-t curve methods. Numerous active sites created on a modified electrode enhanced the mass transport and electron transfer rate, thereby increasing the electrochemical activity towards the 5-Fu detection. Consequently, under optimized conditions, the SrO/h-BN/GCE exhibited remarkable selectivity, durability, low detection limit (0.003 μM) and wide linear range (0.02-56 μM) for 5-Fu. Finally, the successful application of this sensor for 5-Fu detection in biological samples was successfully tested with high recovery percentages.
Collapse
Affiliation(s)
- Magesh Kumar Muthukumaran
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India.
| | - Muthukumar Govindaraj
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India.
| | - Bharathi Kannan Raja
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India.
| | - Arockia Selvi J
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India.
| |
Collapse
|
2
|
Anandhakumari G, Jayabal P, Balasankar A, Ramasundaram S, Oh TH, Aruchamy K, Kallem P, Polisetti V. Synthesis of strontium oxide-zinc oxide nanocomposites by Co-precipitation method and its application for degradation of malachite green dye under direct sunlight. Heliyon 2023; 9:e20824. [PMID: 37867874 PMCID: PMC10585331 DOI: 10.1016/j.heliyon.2023.e20824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/30/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023] Open
Abstract
Photocatalysts workable under direct sunlight are the safe and cost-effective option for water purification. The nanocomposites of strontium oxide and zinc oxide (SZ NCs) were synthesized using coprecipitation method. The respective precursors of SZ NCs were subjected to alkaline hydrolysis and subsequently thermally treated to yield SZ NCs. The SZ NCs with different ZnO composition was synthesized by varying the concentration of ZnO precursor from 0.2 to 1 M. The structural properties of SZ NCs evaluated using X-Ray diffraction (XRD), Thermogravimetric analysis (TGA), and Differential thermal analysis DTA). The optical properties of SZ NCs studied using ultraviolet-visible (UV-Vis) spectroscopic study. The trend observed in the intensity of XRD peaks indicated the occurrence of Zn doping in the crystalline lattice of SrO and the formation of SrO-ZnO composite. Upon incorporation of 1 M of ZnO precursor, the grain size of the SrO was decreased from 49.3 to 27.6 nm. The weight loss in the thermal analysis indicates the removal of carbonates from the sample upon heating and shows the formation of an oxide structure. UV-Vis spectra confirmed that the presence of SrO enhanced the sunlight absorption of SZ NCs. The increase in the composition of ZnO precursors increased the bandgap of SrO (2.09 eV) to the level of ZnO (3.14 eV). SZ NCs exhibited heterostructure morphology, where the nanosized domains with varying shapes (layered and rod-like) were observed. Under direct sunlight conditions, SZ NCs prepared using 1 M/0.6 M of SrO/ZnO precursors exhibited 15-20 % higher photocatalytic efficiency than neat SrO and ZnO. In precise, 1 mg of this SZ NC was degraded 98 % of malachite green dye dissolved in water (10 ppm) under direct sunlight. Additionally, the thermal stability results showed that 18 % decomposition was obtained due to the degradation impurities in SrO/ZnO catalysts and the XRD results revealed that no structural change is obtained in SrO/ZnO photocatalysts after stability test. The SZ NCs can be effectively used as safe and economic sunlight photocatalysts for water purification in remote areas without the electricity.
Collapse
Affiliation(s)
- Govindharaj Anandhakumari
- Department of Physics, Gobi Arts & Science College, Gobichettipalayam, Erode, Tamilnadu-638 453, India
| | - Palanisamy Jayabal
- Department of Physics, Gobi Arts & Science College, Gobichettipalayam, Erode, Tamilnadu-638 453, India
| | - Athinarayanan Balasankar
- Department of Physics, Gobi Arts & Science College, Gobichettipalayam, Erode, Tamilnadu-638 453, India
| | | | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| | - Kanakaraj Aruchamy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| | - Parashuram Kallem
- Department of Environmental and Public Health, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Veerababu Polisetti
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE−100 44 Stockholm, Sweden
| |
Collapse
|
3
|
Rao NP, M VC, Kumar MS, S V, Mukherjee B, N K, Dutta G, Das AK. A fast survey on recent developments in designing colorimetric and fluorescent sensors for the selective detection of essential amino acids. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2546-2577. [PMID: 37219528 DOI: 10.1039/d3ay00155e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Owing to the biological significance of various amino acids, developing accurate and cost-effective sensing techniques for the selective detection of amino acids has recently attracted growing interest. This review discusses the recent advancements of chemosensors in the selective detection of only essential amino acids out of a total of twenty amino acids, which have been applied in chemosensing research, and the mechanism of their action. The focus is directed towards the detection of the most important essential amino acids, like leucine, threonine, lysine, histidine, tryptophan and methionine, since isoleucine and valine are yet to be explored in regard to chemosensing. According to their chemical and fluorescence properties, different sensing techniques, such as the reaction-based approach, DNA-based sensors, nanoparticle formation, coordination ligand binding, host-guest chemistry, the fluorescence indicator displacement (FID) approach, electrochemical sensors, carbon dot-based sensors, MOF-based sensors and metal-based techniques, have been described.
Collapse
Affiliation(s)
- Nidhi P Rao
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore 560029, Karnataka, India.
| | - Vaishnavi C M
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore 560029, Karnataka, India.
| | - Malavika S Kumar
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore 560029, Karnataka, India.
| | - Vishnu S
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore 560029, Karnataka, India.
| | - Bimalendu Mukherjee
- Nano-Biosensors and Biodevices Lab, School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Karthik N
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore 560029, Karnataka, India.
| | - Gorachand Dutta
- Nano-Biosensors and Biodevices Lab, School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Avijit Kumar Das
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore 560029, Karnataka, India.
| |
Collapse
|
4
|
Baghal Behyar M, Hasanzadeh M, Seidi F, Shadjou N. Sensing of Amino Acids: Critical role of nanomaterials for the efficient biomedical analysis. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Kılıç D, Sevim M, Eroğlu Z, Metin Ö, Karaca S. Strontium oxide modified mesoporous graphitic carbon nitride/titanium dioxide nanocomposites (SrO-mpg-CN/TiO2) as efficient heterojunction photocatalysts for the degradation of tetracycline in water. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.05.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
6
|
Musarraf Hussain M, Asiri AM, Rahman MM. Non-enzymatic simultaneous detection of acetylcholine and ascorbic acid using ZnO·CuO nanoleaves: Real sample analysis. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105534] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Rahman MM. Selective and sensitive 4-Aminophenol chemical sensor development based on low-dimensional Ge-doped ZnO nanocomposites by electrochemical method. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104945] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Hussain MM, Asiri AM, Rahman MM. Synthesis, characterization, and physicochemical studies of the synthesized dimethoxy-Nʹ-(phenylsulfonyl)-benzenesulfonohydrazide derivatives and used as a probe for calcium ion capturing: Natural sample analysis. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Alam M, Uddin M, Asiri AM, Rahman MM, Islam M. Development of reproducible thiourea sensor with binary SnO2/V2O5 nanomaterials by electrochemical method. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
10
|
Hussain MM, Asiri AM, Arshad MN, Rahman MM. Synthesis, characterization, and crystal structure of (E)-Nʹ-(4-Bromobenzylidene)-benzenesulfonohydrazide and its application as a sensor of chromium ion detection from environmental samples. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Rahman MM, Hussain MM, Arshad MN, Asiri AM. The synthesis and application of ( E)- N'-(benzo[ d]dioxol-5-ylmethylene)-4-methyl-benzenesulfonohydrazide for the detection of carcinogenic lead. RSC Adv 2020; 10:5316-5327. [PMID: 35498306 PMCID: PMC9049008 DOI: 10.1039/c9ra09080k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/26/2019] [Indexed: 11/21/2022] Open
Abstract
In this study, noble ligands of (E)-N'-(benzo[d]dioxol-5-ylmethylene)-4-methyl-benzenesulfonohydrazide (BDMMBSH) were prepared via a simple condensation method using benzo-[d][1,3]-dioxole carbaldehyde, benzenesulfonylhydrazine (BSH), and 4-methyl-benzenesulphonylhydrazine (4-MBSH) in good yield, which were crystallized in acetone, EtOAc, and EtOH. The BDMMBSH derivatives were characterized using different spectroscopic techniques, such as 1H-NMR, 13C-NMR, FTIR, and UV-Vis spectroscopy, and their crystal structures were analyzed using the single crystal X-ray diffraction method (SCXRDM). Subsequently, the BDMMBSH compounds were used for the significant detection of the carcinogenic heavy metal ion, lead (Pb2+), via a reliable electrochemical approach. A sensitive and selective Pb2+ sensor was developed via the deposition of a thin layer of BDMMBSH on a GCE with the conducting polymer matrix Nafion (NF). The sensitivity, LOQ, and LOD of the proposed sensor towards Pb2+ were calculated from the calibration curves to be 2220.0 pA μM-1 cm-2, 320.0 mM, and 96.0 pM, respectively. The validation of the BDMMBSH/GCE/NF sensor probe was performed via the selective determination of Pb2+ in spiked natural samples with a satisfactory and rational outcome.
Collapse
Affiliation(s)
- Mohammed M Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Mohammad Musarraf Hussain
- Chemistry Department, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
- Department of Pharmacy, Faculty of Life and Earth Sciences, Jagannath University Dhaka-1100 Bangladesh
| | - Muhammad Nadeem Arshad
- Chemistry Department, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
12
|
Rahman MM, Alam MM, Asiri AM, Alamry KA, Hasnat MA. Facile SrO nanorods: an efficient and alternate detection approach for the selective removal of 4-aminophenol towards environmental safety. NEW J CHEM 2020. [DOI: 10.1039/d0nj02889d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this approach, it is introduced a new route to fabricate a reliable and reproducible wet-chemically prepared SrO NRs fabricated glassy carbon electrode sensor probe by electrochemical method for the detection of phenolic derivatives for the safety of environmental and healthcare fields in broad scales.
Collapse
Affiliation(s)
- Mohammed M. Rahman
- Department of Chemistry
- King Abdulaziz University
- Faculty of Science
- Jeddah 21589
- Saudi Arabia
| | - M. M. Alam
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| | - Abdullah M. Asiri
- Department of Chemistry
- King Abdulaziz University
- Faculty of Science
- Jeddah 21589
- Saudi Arabia
| | - K. A. Alamry
- Department of Chemistry
- King Abdulaziz University
- Faculty of Science
- Jeddah 21589
- Saudi Arabia
| | - M. A. Hasnat
- Department of Chemistry
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| |
Collapse
|
13
|
Abou Hammad AB, Elzwawy A, Mansour AM, Alam MM, Asiri AM, Karim MR, Rahman MM, El Nahrawy AM. Detection of 3,4-diaminotoluene based on Sr 0.3Pb 0.7TiO 3/CoFe 2O 4 core/shell nanocomposite via an electrochemical approach. NEW J CHEM 2020. [DOI: 10.1039/d0nj01074j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We reported a scalable sol–gel method for the preparation of Sr0.3Pb0.7TiO3/CoFe2O4 core–shell magnetic nanocomposite with a finely controlled shell and evaluated its efficiency as an electrochemical sensor for the selective detection of 3,4-diaminotoluene.
Collapse
Affiliation(s)
- Ali B. Abou Hammad
- Solid State Physics Department
- Physics research division
- National Research Centre
- Cairo
- Egypt
| | - Amir Elzwawy
- Ceramics Department
- National Research Centre
- Cairo
- Egypt
| | - A. M. Mansour
- Solid State Physics Department
- Physics research division
- National Research Centre
- Cairo
- Egypt
| | - M. M. Alam
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research and Chemistry Department, Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Mohammad Razaul Karim
- Center of Excellence for Advanced Materials Research and Chemistry Department, Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Mohammed M. Rahman
- Center of Excellence for Advanced Materials Research and Chemistry Department, Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Amany M. El Nahrawy
- Solid State Physics Department
- Physics research division
- National Research Centre
- Cairo
- Egypt
| |
Collapse
|
14
|
Rahman MM, Hussain MM, Asiri AM. Enzyme-free detection of uric acid using hydrothermally prepared CuO·Fe 2O 3 nanocrystals. NEW J CHEM 2020. [DOI: 10.1039/d0nj04266h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Copper oxide doped iron oxide nanocrystals (CuO·Fe2O3 NCs) were prepared using a simple hydrothermal technique at low temperature in an alkaline medium.
Collapse
Affiliation(s)
- Mohammed M. Rahman
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | | | - Abdullah M. Asiri
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| |
Collapse
|
15
|
Hussain MM, Asiri AM, Rahman MM. A non-enzymatic electrochemical approach for l-lactic acid sensor development based on CuO·MWCNT nanocomposites modified with a Nafion matrix. NEW J CHEM 2020. [DOI: 10.1039/d0nj01715a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper oxide decorated multi-walled carbon nanotube nanocomposites (CuO·MWCNT NCs) were prepared using a simple wet-chemical technique in basic medium.
Collapse
Affiliation(s)
- Mohammad Musarraf Hussain
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)
| | - Abdullah M. Asiri
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)
| | - Mohammed M. Rahman
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)
| |
Collapse
|
16
|
Hussain MM, Asiri AM, Rahman MM. Simultaneous detection of l-aspartic acid and glycine using wet-chemically prepared Fe3O4@ZnO nanoparticles: real sample analysis. RSC Adv 2020; 10:19276-19289. [PMID: 35515430 PMCID: PMC9054059 DOI: 10.1039/d0ra03263h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/07/2020] [Indexed: 11/21/2022] Open
Abstract
An easy and reliable wet-chemical method was used to synthesize iron oxide doped zinc oxide nanoparticles (Fe3O4@ZnO NPs) at a low-temperature under alkaline medium.
Collapse
Affiliation(s)
| | - Abdullah M. Asiri
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Mohammed M. Rahman
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| |
Collapse
|
17
|
Hussain MM, Asiri AM, Arshad MN, Rahman MM. A Thallium Ion Sensor Development Based on the Synthesized (E)‐N′‐(Methoxybenzylidene)‐4‐ Methylbenzenesulfonohydrazide Derivatives: Environmental Sample Analysis. ChemistrySelect 2019. [DOI: 10.1002/slct.201902193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mohammad Musarraf Hussain
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
- Department of PharmacyFaculty of Life and Earth SciencesJagannath University Dhaka- 1100, Bangladesh
| | - Abdullah M. Asiri
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
| | - Muhammad Nadeem Arshad
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
| | - Mohammed M. Rahman
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
| |
Collapse
|
18
|
Nanomaterial-based electrochemical (bio)-sensing: One step ahead in diagnostic and monitoring of metabolic rare diseases. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Rahman MM, Hussain MM, Arshad MN, Awual MR, Asiri AM. Arsenic sensor development based on modification with (E)-N′-(2-nitrobenzylidine)-benzenesulfonohydrazide: a real sample analysis. NEW J CHEM 2019. [DOI: 10.1039/c9nj01567a] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
(E)-N′-(2-Nitrobenzylidene)-benzenesulfonohydrazide was prepared from 2-nitrobenzaldehyde and benzenesulfonylhydrazine by using a condensation method and applied as a selective As3+ sensor.
Collapse
Affiliation(s)
- Mohammed M. Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University
- Jeddah 21589
| | - Mohammad Musarraf Hussain
- Chemistry Department, Faculty of Science, King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University
- Jeddah 21589
| | - Muhammad N. Arshad
- Chemistry Department, Faculty of Science, King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University
- Jeddah 21589
| | - Md. Rabiul Awual
- Center of Excellence for Advanced Materials Research, King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University
- Jeddah 21589
| |
Collapse
|
20
|
Rahman MM, Hussain MM, Asiri AM. d-Glucose sensor based on ZnO·V2O5 NRs by an enzyme-free electrochemical approach. RSC Adv 2019; 9:31670-31682. [PMID: 35527960 PMCID: PMC9073342 DOI: 10.1039/c9ra06491e] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/21/2019] [Indexed: 11/21/2022] Open
Abstract
A simple wet-chemical technique was used to prepare zinc oxide-doped vanadium pentaoxide nanorods (ZnO·V2O5 NRs) in an alkaline environment. The synthesized ZnO·V2O5 NRs were characterized using typical methods, including UV-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (XEDS), X-ray photoelectron spectroscopy (XPS), and X-ray powder diffraction (XRD). The d-glucose (d-GLC) sensor was fabricated with modification of a slight coating of nanorods (NRs) onto a flat glassy carbon electrode (GCE). The analytical performances, such as the sensitivity, limit of quantification (LOQ), limit of detection (LOD), linear dynamic range (LDR), and durability, of the proposed d-GLC sensor were acquired by a dependable current–voltage (I–V) process. A calibration curve of the GCE/ZnO·V2O5 NRs/Nf sensor was plotted at +1.0 V over a broad range of d-GLC concentrations (100.0 pM–100.0 mM) and found to be linear (R2 = 0.6974). The sensitivity (1.27 × 10−3 μA μM−1 cm−2), LOQ (417.5 mM), and LOD (125 250 μM) were calculated from the calibration curve. The LDR (1.0 μM–1000 μM) was derived from the calibration plot and was also found to be linear (R2 = 0.9492). The preparation of ZnO·V2O5 NRs by a wet-chemical technique is a good advancement for the expansion of nanomaterial-based sensors to support enzyme-free sensing of biomolecules in healthcare fields. This fabricated GCE/ZnO·V2O5 NRs/Nf sensor was used for the recognition of d-glucose in real samples (apple juice, human serum, and urine) and returned satisfactory and rational outcomes. A simple wet-chemical technique was used to prepare zinc oxide-doped vanadium pentaoxide nanorods (ZnO·V2O5 NRs) in an alkaline environment.![]()
Collapse
Affiliation(s)
- Mohammed M. Rahman
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | | | - Abdullah M. Asiri
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| |
Collapse
|
21
|
Alam MM, Asiri AM, Uddin MT, Islam MA, Rahman MM. In-situ Glycine Sensor Development Based ZnO/Al2
O3
/Cr2
O3
Nanoparticles. ChemistrySelect 2018. [DOI: 10.1002/slct.201802750] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- M. M. Alam
- Department of Chemical Engineering and Polymer Science; Shahjalal University of Science and Technology; Sylhet 3100 Bangladesh
| | - Abdullah M. Asiri
- Chemistry Department; King Abdulaziz University; Faculty of Science; Jeddah 21589, P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR); King Abdulaziz University; Jeddah 21589, P.O. Box 80203 Saudi Arabia
| | - M. T. Uddin
- Department of Chemical Engineering and Polymer Science; Shahjalal University of Science and Technology; Sylhet 3100 Bangladesh
| | - M. A. Islam
- Department of Chemical Engineering and Polymer Science; Shahjalal University of Science and Technology; Sylhet 3100 Bangladesh
| | - Mohammed M. Rahman
- Chemistry Department; King Abdulaziz University; Faculty of Science; Jeddah 21589, P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR); King Abdulaziz University; Jeddah 21589, P.O. Box 80203 Saudi Arabia
| |
Collapse
|
22
|
Sensitive and selective heavy metal ion, Mn2+ sensor development based on the synthesized (E)-N′-chlorobenzylidene-benzenesulfonohydrazide (CBBSH) molecules modified with nafion matrix. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.02.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
García-Carmona L, González MC, Escarpa A. Electrochemical On-site Amino Acids Detection of Maple Syrup Urine Disease Using Vertically Aligned Nickel Nanowires. ELECTROANAL 2018. [DOI: 10.1002/elan.201800103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Laura García-Carmona
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry; University of Alcalá; 28871 Alcalá de Henares Madrid Spain
| | - María Cristina González
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry; University of Alcalá; 28871 Alcalá de Henares Madrid Spain
- Chemical Research Institute “Andrés M. del Río”; University of Alcalá; Alcalá de Henares E-28871 Madrid Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry; University of Alcalá; 28871 Alcalá de Henares Madrid Spain
- Chemical Research Institute “Andrés M. del Río”; University of Alcalá; Alcalá de Henares E-28871 Madrid Spain
| |
Collapse
|
24
|
Hussain MM, Asiri AM, Arshad MN, Rahman MM. Fabrication of a Ga3+ sensor probe based on methoxybenzylidenebenzenesulfonohydrazide (MBBSH) by an electrochemical approach. NEW J CHEM 2018. [DOI: 10.1039/c7nj01891f] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A thin-layer of (E)-N′-methoxybenzylidenebenzenesulfonohydrazide (MBBSH) was fabricated by the deposition of MBBSH onto a smooth glassy carbon electrode with nafion binder for the sensitive and selective Ga3+ sensor probe.
Collapse
Affiliation(s)
- Mohammad Musarraf Hussain
- Chemistry Department, Faculty of Science, King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
- Center of Excellence for Advanced Material Research, King Abdulaziz University
- Jeddah 21589
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
- Center of Excellence for Advanced Material Research, King Abdulaziz University
- Jeddah 21589
| | - Muhammad Nadeem Arshad
- Chemistry Department, Faculty of Science, King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
- Center of Excellence for Advanced Material Research, King Abdulaziz University
- Jeddah 21589
| | - Mohammed M. Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
- Center of Excellence for Advanced Material Research, King Abdulaziz University
- Jeddah 21589
| |
Collapse
|
25
|
Asiri AM, Hussain MM, Arshad MN, Rahman MM. A Ce2+ sensor based on napthalen-1-yl-methylene-benzenesulfonohydrazide (NMBSH) molecules: ecological sample analysis. NEW J CHEM 2018. [DOI: 10.1039/c7nj05109c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A sensitive and selective Ce2+ sensor was developed based on napthalen-1-yl-methylene-benzenesulfonohydrazide (NMBSH) derivatives via an electrochemical approach.
Collapse
Affiliation(s)
- Abdullah M. Asiri
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | | | | | - Mohammed M. Rahman
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| |
Collapse
|
26
|
Rahman MM, Hussain MM, Asiri AM. Fabrication of 3-methoxyphenol sensor based on Fe3O4 decorated carbon nanotube nanocomposites for environmental safety: Real sample analyses. PLoS One 2017; 12:e0177817. [PMID: 28938019 PMCID: PMC5609863 DOI: 10.1371/journal.pone.0177817] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 05/03/2017] [Indexed: 01/15/2023] Open
Abstract
Iron oxide ornamented carbon nanotube nanocomposites (Fe3O4.CNT NCs) were prepared by a wet-chemical process in basic means. The optical, morphological, and structural characterizations of Fe3O4.CNT NCs were performed using FTIR, UV/Vis., FESEM, TEM; XEDS, XPS, and XRD respectively. Flat GCE had been fabricated with a thin-layer of NCs using a coating binding agent. It was performed for the chemical sensor development by a dependable I-V technique. Among all interfering analytes, 3-methoxyphenol (3-MP) was selective towards the fabricated sensor. Increased electrochemical performances for example elevated sensitivity, linear dynamic range (LDR) and continuing steadiness towards selective 3-MP had been observed with chemical sensor. The calibration graph found linear (R2 = 0.9340) in a wide range of 3-MP concentration (90.0 pM ~ 90.0 mM). The limit of detection and sensitivity were considered as 1.0 pM and 9×10-4 μAμM-1cm-2 respectively. The prepared of Fe3O4.CNT NCs by a wet-chemical progression is an interesting route for the development of hazardous phenolic sensor based on nanocomposite materials. It is also recommended that 3-MP sensor is exhibited a promising performances based on Fe3O4.CNT NCs by a facile I-V method for the significant applications of toxic chemicals for the safety of environmental and health-care fields.
Collapse
Affiliation(s)
- Mohammed M. Rahman
- Chemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Musarraf Hussain
- Chemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
27
|
Rahman MM, Hussain MM, Asiri AM. Ultrasensitive and label-free detection of creatine based on CdO nanoparticles: a real sample approach. NEW J CHEM 2017. [DOI: 10.1039/c6nj04101a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low-dimensional cadmium oxide nanoparticles (CdO NPs) were prepared by a facile wet-chemical method, which later electrochemically investigated for the determination of selective creatine and measured the analytical sensor parameters such as sensitivity, limit of detection (LOD), linear dynamic range (LDR), long-term stability, and real-sample validation.
Collapse
Affiliation(s)
- Mohammed M. Rahman
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | | | - Abdullah M. Asiri
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| |
Collapse
|
28
|
Rahman MM, Ahmed J, Asiri AM. A glassy carbon electrode modified with γ-Ce2S3-decorated CNT nanocomposites for uric acid sensor development: a real sample analysis. RSC Adv 2017. [DOI: 10.1039/c6ra27414e] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
γ-Ce2S3-decorated multi-walled carbon nanotube nanocomposite (Ce2S3-CNT NC) was synthesized by a wet chemical method in basic media.
Collapse
Affiliation(s)
- Mohammed M. Rahman
- Center of Excellence for Advanced Materials Research (CEAMR)
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
- Chemistry Department
| | - Jahir Ahmed
- Department of Chemistry
- School of Physical Sciences
- Shahjalal University of Science and Technology
- Sylhet-3100
- Bangladesh
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research (CEAMR)
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
- Chemistry Department
| |
Collapse
|