1
|
Yan W, Huang Q, Zhou L, Lin X. Direct photoelectrochemical detection of ethanol in complex biological sample. Biosens Bioelectron 2025; 268:116915. [PMID: 39522466 DOI: 10.1016/j.bios.2024.116915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The development of advanced photoelectrochemical (PEC) technology for the direct detection of ethanol in complex biological sample, has become a hot topic. However, the photo-active nanomaterials, which could generate the photo-induced carriers under illumination, are susceptible to biofouling and interference in complex bio-matrices. In this work, the silica nanochannel-protected TiO2 nanomaterials was reported for the first time that enables the direct sensing of ethanol in real fruits and untreated whole blood. The modification of SNC enhanced the sensitivity of ethanol detection by promoting light absorption, electron-hole separation, and surface reaction rate of photo-active materials. Meanwhile, the biofouling macromolecules and interference signals can be effectively excluded due to the hydrophilic properties, size, and electrostatic exclusion of nanochannels. As a result, without any complex sample pretreatments, the proposed PEC sensor can be directly immersed in complex biological samples for ethanol detection, exhibiting a broad linear range (1.775 μM-20 mM) and a low detection limit (1.2 μM), as well as excellent reproducibility and stability. This work paves a new path for PEC sensors in real biomedical applications.
Collapse
Affiliation(s)
- Wenyan Yan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qinle Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Lin Zhou
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
2
|
Liu L, Xie K, Wang Y, Wang H, Wang J, Zhuang Y, Zhang Y. Polyhedral oligomeric silsesquioxane-modulated mesoporous amorphous bimetallic organic frameworks for the efficient isolation of immunoglobulin G. Talanta 2025; 282:126949. [PMID: 39341058 DOI: 10.1016/j.talanta.2024.126949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
The efficient and accurate separation of immunoglobulin G (IgG) plays a vital role for disease diagnosis and therapy, but it is always hampered by the huge geometric size and complex structure of IgG. In this work, an amorphous Fe/Co bimetallic organic framework (denoted as PMOF-Fe/Co) is fabricated for IgG separation, with octa-carboxyl polyhedral oligomeric silsesquioxane (OCPOSS) as modulator for the first time. Benefiting from the rigid nanostructure and competitive coordination of OCPOSS, the aperture of PMOF-Fe/Co is enlarged to ∼20 nm along with the generation of enormous structural defects, which enables the accommodation of protein species with high molecular weights and large sizes. OCPOSS is also found exerting a positive impact on mediating the specific recognition and adsorption ability of PMOF-Fe/Co towards IgG through metal affinity, hydrophilic and hydrophobic interactions. Consequently, the multimode and multivalent affinity of PMOF-Fe/Co gives rise to an extraordinary adsorption capacity (2691.7 mg g-1) and satisfactory practical application performance. This study is convinced to provide a simple avenue for the efficient separation of specific large-sized proteins, as well as the engineering of abiotic affinity reagents with compositional and architectural complexity.
Collapse
Affiliation(s)
- Lan Liu
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Kai Xie
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuheng Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haoran Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jinyi Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yuting Zhuang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yue Zhang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Mohammadbagheri Z, Movahedi B, Saeedi S, Rahmati A. An eco-friendly composite hydrogel based on covalently crosslinked cellulose/poly (glycerol citrate) for thallium (Ι) removal from aqueous solutions. Int J Biol Macromol 2024; 254:127840. [PMID: 37926325 DOI: 10.1016/j.ijbiomac.2023.127840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Cellulose/poly (glycerol citrate) reinforced with thiol-rich polyhedral oligomeric silsesquioxane and apple peel (POSS-SH@CAG-CEL/AP) was synthesized using gelation method in the presence of glutaraldehyde as a crosslinker agent and used as an efficient composite hydrogel for elimination of Tl(Ι) from aqueous solutions. This composite hydrogel and synthesized thiol-rich polyhedral oligomeric silsesquioxane were characterized by elemental analysis, FT-IR, NMR, TGA, and FE-SEM techniques. The effects of synthetic and environmental parameters on the adsorption capacity of the composite hydrogel were investigated and it was found that thiol-rich polyhedral oligomeric silsesquioxane has improved the hydrogel properties including the Tl(Ι) uptake and the thermal stability. The maximum adsorption capacity of 352.3 mg g-1 was obtained within 30 min under optimum reaction conditions. A typical Langmuir adsorption isotherm with was observed for adsorption of Tl(I) onto POSS-SH@CAG-CEL/AP and pseudo-second-order kinetic model provided the best correlation between experimental data. Thermodynamic studies showed that the Tl(I) adsorption was spontaneous process and exothermic. Also, the reusability tests confirmed that the POSS-SH@CAG-CEL/AP can be reused for four times without any remarkable change in its adsorption capacity. Thus, this reusable biobased composite hydrogel can be an ideal candidate for elimination of Tl(I) from aqueous solutions.
Collapse
Affiliation(s)
- Zahra Mohammadbagheri
- Department of Chemistry, University of Isfahan, P.O. Box 81746-734 41, Isfahan, Iran; Department of Nanotechnology, Faculty of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Behrooz Movahedi
- Department of Chemistry, University of Isfahan, P.O. Box 81746-734 41, Isfahan, Iran; Department of Nanotechnology, Faculty of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Shaghayegh Saeedi
- Department of Chemistry, University of Isfahan, P.O. Box 81746-734 41, Isfahan, Iran; Department of Nanotechnology, Faculty of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Abbas Rahmati
- Department of Chemistry, University of Isfahan, P.O. Box 81746-734 41, Isfahan, Iran; Department of Nanotechnology, Faculty of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| |
Collapse
|
4
|
Efficient Adsorption and Extraction of Glutathione S-Transferases with Glutathione-Functionalized Graphene Oxide-Polyhedral Oligomeric Silsesquioxane Composite. Molecules 2023; 28:molecules28010340. [PMID: 36615535 PMCID: PMC9821976 DOI: 10.3390/molecules28010340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Glutathione S-transferases (GSTs) are important type-II detoxification enzymes that protect DNA and proteins from damage and are often used as protein tags for the expression of fusion proteins. In the present work, octa-aminopropyl caged polyhedral oligomeric silsesquioxane (OA-POSS) was prepared via acid-catalyzed hydrolysis of 3-aminopropyltriethoxysilane and polymerized on the surface of graphene oxide (GO) through an amidation reaction. Glutathione (GSH) was then modified to GO-POSS through a Michael addition reaction to obtain a GSH-functionalized GO-POSS composite (GPG). The structure and characteristics of the as-prepared GPG composite were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravity analysis, and surface charge analysis. The specific binding interactions between glutathione and GST gave GPG favorable adsorption selectivity towards GST, and other proteins did not affect GST adsorption. The adsorption behavior of GST on the GPG composite conformed to the Langmuir isotherm model, and the adsorption capacity of GST was high up to 364.94 mg g-1 under optimal conditions. The GPG-based solid-phase adsorption process was applied to the extraction of GST from a crude enzyme solution of pig liver, and high-purity GST was obtained via SDS-PAGE identification.
Collapse
|
5
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Pseudo-mercaptoethyl pyridine functionalized polyhedral oligomeric silsesquioxane-graphene composite via thiol-ene click reaction for highly selective purification of antibody. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1208:123408. [DOI: 10.1016/j.jchromb.2022.123408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022]
|
7
|
Fan H, Guo Z. Bioinspired surfaces with wettability: biomolecule adhesion behaviors. Biomater Sci 2020; 8:1502-1535. [PMID: 31994566 DOI: 10.1039/c9bm01729a] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Surface wettability plays an important role in regulating biomolecule adhesion behaviors. The biomolecule adhesion behaviors of superwettable surfaces have become an important topic as an important part of the interactions between materials and organisms. In addition to general research on the moderate wettability of surfaces, the studies of biomolecule adhesion behaviors extend to extreme wettability ranges such as superhydrophobic, superhydrophilic and slippery surfaces and attract both fundamental and practical interest. In this review, we summarize the recent studies on biomolecule adhesion behaviors on superwettable surfaces, especially superhydrophobic, superhydrophilic and slippery surfaces. The first part will focus on the influence of extreme wettability on cell adhesion behaviors. The second part will concentrate on the adhesion behaviors of biomacromolecules on superwettable surfaces including proteins and nucleic acids. Finally, the influences of wettability on small molecule adhesion behaviors on material surfaces have also been investigated. The mechanism of superwettable surfaces and their influences on biomolecule adhesion behaviors have been studied and highlighted.
Collapse
Affiliation(s)
- Haifeng Fan
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China. and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Zhiguang Guo
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China. and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
8
|
Wang XM, Hu ZJ, Guo PF, Chen ML, Wang JH. Purification of hemoglobin by adsorption on nitrogen-doped flower-like carbon superstructures. Mikrochim Acta 2020; 187:162. [PMID: 32048050 DOI: 10.1007/s00604-020-4151-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/31/2020] [Indexed: 01/10/2023]
Abstract
Nitrogen-doped flower-like carbon superstructures (NPC-F) are prepared via carbonizing self-assembled polyimide nanosheets. SEM, TEM, XPS, and N2 sorption methods are adopted to characterize the flower-like structure. NPC-F exhibits adsorption selectivity for hemoglobin (Hb) because the specific pyridinic N groups of NPC-F could coordinate with the sixth vacancy of ferrous ion in hemoglobin. The adsorption behavior fits well with Langmuir model with a maximum adsorption capacity of 360.0 mg g-1 and the adsorbed Hb could be lightly stripped from the NPC-F nanospheres surface by 0.5 wt% CTAB solution. Circular dichroism spectra indicate no obvious conformation changing of Hb during purification process by NPC-F nanospheres. Five cycles of a continuous adsorption/desorption experiment demonstrate the reusability of NPC-F as adsorbent for Hb. The prepared NPC-F superstructures are then employed for the isolation of Hb from human whole blood sample, obtaining high-purity Hb as demonstrated by sodium dodecyl sulfate polyacrylamide gel electrophoresis assays. Graphical abstractNitrogen-doped flower-like carbon superstructure (NPC-F) is used to isolate target protein. NPC-F exhibits highly selective capture capacity towards hemoglobin because the specific pyridinic N groups of NPC-F could coordinate with the sixth vacant coordinating position of Fe2+ in hemoglobin.
Collapse
Affiliation(s)
- Xi-Ming Wang
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Zheng-Jie Hu
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Peng-Fei Guo
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Ming-Li Chen
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| | - Jian-Hua Wang
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| |
Collapse
|
9
|
Hu Z, Wang X, Wang J, Chen X. PEGylation of metal-organic framework for selective isolation of glycoprotein immunoglobulin G. Talanta 2020; 208:120433. [DOI: 10.1016/j.talanta.2019.120433] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 01/08/2023]
|
10
|
Zhang S, Tang Y, Chen Y, Zhang J, Wei Y. Boronic acid-modified polyhedral oligomeric silsesquioxanes on polydopamine-coated magnetized graphene oxide for selective and high-capacity extraction of the catecholamines epinephrine, dopamine and isoprenaline. Mikrochim Acta 2020; 187:77. [DOI: 10.1007/s00604-019-4036-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/18/2019] [Indexed: 12/27/2022]
|
11
|
Zhang Y, Hao J, Xu X, Chen X, Wang J. Protein Corona-Triggered Catalytic Inhibition of Insufficient POSS Polymer-Caged Gold Nanoparticles for Sensitive Colorimetric Detection of Metallothioneins. Anal Chem 2019; 92:2080-2087. [DOI: 10.1021/acs.analchem.9b04593] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yue Zhang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China
| | - Junxia Hao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China
| | - Xiaojian Xu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China
| | - Xuwei Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China
| |
Collapse
|
12
|
High Performance Multilayered Organosilicon/Silicon Oxynitride Water Barrier Structure Consecutively Deposited by Plasma-Enhanced Chemical Vapor Deposition at a Low-Temperature. COATINGS 2019. [DOI: 10.3390/coatings10010011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, pairs of the organosilicon/silicon oxynitride (SiOxNy) barrier structures with an ultralow water vapor transmittance rate (WVTR) were consecutively prepared by the plasma-enhanced chemical vapor deposition at a low temperature of 70 °C using the tetramethylsilane (TMS) monomer and the TMS-oxygen-ammonia gas mixture, respectively. The thickness of the SiOxNy film in the barrier structure was firstly designed by optimizing its effective permeability. The WVTR was further decreased by inserting an adequate thickness of the organosilicon layer as the stress residing in the barrier structure was released accordingly. By prolonging the diffusion pathway for water vapor permeation, three-paired organosilicon/SiOxNy multilayered barrier structure with a WVTR of about 10−5 g/m2/day was achievable for meeting the requirement of the thin film encapsulation on the organic light emitting diode.
Collapse
|
13
|
Zhou T, Che G, Ding L, Sun D, Li Y. Recent progress of selective adsorbents: From preparation to complex sample pretreatment. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115678] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Synergistic effect of organic-inorganic hybrid monomer and polyhedral oligomeric silsesquioxanes in a boronate affinity monolithic capillary/chip for enrichment of glycoproteins. Mikrochim Acta 2019; 186:812. [DOI: 10.1007/s00604-019-3938-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/12/2019] [Indexed: 01/27/2023]
|
15
|
Guo PF, Wang XM, Chen XW, Yang T, Chen ML, Wang JH. Nanostructures serve as adsorbents for the selective separation/enrichment of proteins. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115650] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Wang XM, Guo PF, Hu ZJ, Chen ML, Wang JH. DMSA-Functionalized Mesoporous Alumina with a High Capacity for Selective Isolation of Immunoglobulin G. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36286-36295. [PMID: 31491081 DOI: 10.1021/acsami.9b13718] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel dimercaptosuccinic acid-functionalized mesoporous alumina (DMSA-MA) is synthesized by the dicarboxylic acid groups of dimercaptosuccinic acid molecules coordinating to the Al3+ ions located in the mesostructure. The as-prepared DMSA-MA composites possess a large surface area of 91.17 m2/g as well as a uniform pore size and a high pore volume of 17.22 nm and 0.23 cm3/g, respectively. DMSA coating of mesostructures significantly enhanced their selectivity for glycoprotein adsorption through a powerful hydrophilic binding force, and the maximum adsorption capacity of immunoglobulin G (IgG) can reach 2298.6 mg g-1. The captured IgG could be lightly stripped from the DMSA-MA composites with an elution rate of 98.3% by using 0.5 wt % CTAB solution as the elution reagent. DMSA-MA is further employed as a sorbent for the enrichment of IgG heavy chain and light chain from human serum sample. SDS-PAGE assay results showed the obtained IgG with high purity compared to that of the standard solution of IgG.
Collapse
Affiliation(s)
- Xi-Ming Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Peng-Fei Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Zheng-Jie Hu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| |
Collapse
|
17
|
Guo PF, Wang XM, Wang MM, Yang T, Chen ML, Wang JH. Two-dimensional titanate-based zwitterionic hydrophilic sorbent for the selective adsorption of glycoproteins. Anal Chim Acta 2019; 1088:72-78. [PMID: 31623718 DOI: 10.1016/j.aca.2019.08.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/16/2019] [Accepted: 08/19/2019] [Indexed: 01/07/2023]
Abstract
The selective adsorption towards glycoproteins from complex biosamples is of vital importance in life science studies. A new zwitterionic hydrophilic material, i.e., a functionalized titanate nanosheet, is prepared by assembling well-dispersed gold nanoparticles (AuNPs) on the surface of ultrathin titanate nanosheets via an ion-exchange approach, followed through immobilizing l-cysteine (L-Cys) by Au-S bonding. This 2D-titanate-based zwitterionic hydrophilic material is shortly termed as L-Cys/Au/TiNSs and it exhibits transverse several hundred nanometers with an ultrathin nanosheet structure. The zwitterionic hydrophilic titanate nanosheets have strong adsorption affinity to glycoproteins, offering a large binding capacity towards immunoglobulin G (1098.9 mg g-1), which could be readily stripped into an ammonium hydroxide (NH4OH) solution (0.5%, m/v) with a recovery of 82.4%. The practical applications of L-Cys/Au/TiNSs are further proved by successful specific adsorption of IgG from human serum.
Collapse
Affiliation(s)
- Peng-Fei Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Xi-Ming Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Meng-Meng Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| |
Collapse
|
18
|
Electrospun polyacrylonitrile fibers with and without magnetic nanoparticles for selective and efficient separation of glycoproteins. Mikrochim Acta 2019; 186:542. [DOI: 10.1007/s00604-019-3655-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/02/2019] [Indexed: 01/23/2023]
|
19
|
Magnetite nanoparticles coated with mercaptosuccinic acid-modified mesoporous titania as a hydrophilic sorbent for glycopeptides and phosphopeptides prior to their quantitation by LC-MS/MS. Mikrochim Acta 2019; 186:159. [DOI: 10.1007/s00604-019-3274-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/20/2019] [Indexed: 11/26/2022]
|
20
|
Sun N, Wu H, Chen H, Shen X, Deng C. Advances in hydrophilic nanomaterials for glycoproteomics. Chem Commun (Camb) 2019; 55:10359-10375. [PMID: 31414669 DOI: 10.1039/c9cc04124a] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Owing to the formidable challenge posed by microheterogeneities in glycosylation sites, macroheterogeneity of the modification number of glycans, and low abundance and ionization efficiency of glycosylation, the crucial premise for conducting in-depth profiling of the glycoproteome is to develop highly efficient technology for separation and enrichment. The appearance of hydrophilic interaction chromatography (HILIC) has considerably accelerated the progress in glycoproteomics. In particular, additional hydrophilic nanomaterials have been developed for glycoproteomics research in the recent years. In this review, we mainly summarize the recent progresses made in the design and synthesis of different hydrophilic nanomaterials, as well as their applications in glycoproteomics, according to the classification of the main hydrophilic functional molecules on the surface. Further, we briefly illustrate the potential retention mechanism of the HILIC mode and discuss the limits and barriers of hydrophilic nanomaterials in glycoproteomics, as well as propose their possible development trends in the future.
Collapse
Affiliation(s)
- Nianrong Sun
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, China.
| | | | | | | | | |
Collapse
|
21
|
Qiao M, Liu X, Song JW, Yang T, Chen ML, Wang JH. Improving the adsorption capacity for ovalbumin by functional modification of aminated mesoporous silica nanoparticles with tryptophan. J Mater Chem B 2018; 6:7703-7709. [PMID: 32254892 DOI: 10.1039/c8tb02221f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tryptophan (Trp) modified aminated mesoporous silica nanoparticles (AMSNs), shortened to Trp-AMSNs, are prepared via covalent binding. The obtained Trp-AMSNs exhibit a uniform size of ca. 83 nm, a mesopore diameter of ca. 2.6 nm, along with a pore volume of 0.439 cm3 g-1. It is demonstrated that Trp-AMSNs selectively adsorb ovalbumin (Ova) from complex biological matrices. At pH 5.0, 1.0 mg of Trp-AMSNs produces an adsorption efficiency of 96% for 100 mg L-1 Ova in 1.0 mL of solution. An adsorption capacity of 1240.3 mg g-1 is derived for Ova, which is much improved with respect to that of the native AMSNs. The retained Ova could be readily recovered by a sodium dodecyl sulfate (SDS) solution (0.5%, m/v), providing a recovery of 71.2%. Trp-AMSNs are further applied for the isolation of Ova from a protein mixture (with a molar ratio of ovalbumin/lysozyme of 1 : 10) and an egg-white sample. High-purity Ova is obtained, as demonstrated by SDS-PAGE assay results.
Collapse
Affiliation(s)
- Min Qiao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | | | | | | | | | | |
Collapse
|
22
|
Guo PF, Zhang DD, Guo ZY, Wang XM, Wang MM, Chen ML, Wang JH. PEGylated titanate nanosheets: hydrophilic monolayers with a superior capacity for the selective isolation of immunoglobulin G. NANOSCALE 2018; 10:12535-12542. [PMID: 29931026 DOI: 10.1039/c8nr02995d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A novel organic-inorganic hybrid was prepared by anchoring (3-aminopropyl)triethoxysilane (APTES) on the surface of monolayer titanate nanosheets and subsequent modification with hydrophilic polyethylene glycol (PEG). The PEGylated hydrophilic monolayer titanate nanosheets were abbreviated as PEG-APTES-TiNSs, and they exhibit a lateral dimension of dozens of nanometers and a thickness of ca. 1.9 nm. PEGylation of the titanate nanosheets significantly improved their selectivity toward the adsorption of glycoproteins through strong hydrophilic interaction, providing an adsorption capacity of 2540.9 mg g-1 for immunoglobulin G (IgG). The retained IgG is readily collected at a recovery rate of 83.4% with 0.5% (m/v) ammonium hydroxide (NH4OH) as the stripping reagent. PEG-APTES-TiNSs are applied for the selective adsorption of IgG from human serum, which is further confirmed by SDS-PAGE assay.
Collapse
Affiliation(s)
- Peng-Fei Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhang DD, Guo ZY, Guo PF, Hu X, Chen XW, Wang JH. Polyoxometalate-Coated Magnetic Nanospheres for Highly Selective Isolation of Immunoglobulin G. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21876-21882. [PMID: 29882647 DOI: 10.1021/acsami.8b05334] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polyoxometalate [{a-PW11O39Zr(μ-OH)(H2O)}2]8- (POM1) is first prepared by sandwiching ZrIV among 2 mono-lacunary α-Keggin polyoxometalates, and then novel magnetic nanoparticles (NPs), Fe3O4@polyethyleneimine (PEI)@POM1, are fabricated by coating POM1 onto the surface of magnetic Fe3O4@PEI NPs under electrostatic interaction. The obtained Fe3O4@PEI@POM1 NPs are characterized by Fourier transform infrared, zeta potential, vibrating sample magnetometer, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. Ascribed to the hydrogen-bonding and electrostatic interactions, the NPs exhibit high adsorption selectivity toward IgG, and the adsorption capacity is high up to 304 mg g-1 under optimal adsorption conditions. By using 0.01% cetyl trimethylammonium bromide to strip the adsorbed protein species, an elution efficiency of 95% is achieved. The feasibility of Fe3O4@PEI@POM1 NPs in real-world sample assay has been demonstrated by the selective isolation of IgG heavy chain and light chain from human serum, as confirmed by the sodium dodecyl sulfate polyacrylamide gel electrophoresis assay.
Collapse
Affiliation(s)
- Dan-Dan Zhang
- Department of Chemistry, College of Science , Northeastern University , Shenyang 110819 , China
| | - Zhi-Yong Guo
- Department of Chemistry, College of Science , Northeastern University , Shenyang 110819 , China
| | - Peng-Fei Guo
- Department of Chemistry, College of Science , Northeastern University , Shenyang 110819 , China
| | - Xue Hu
- Department of Chemistry, College of Science , Northeastern University , Shenyang 110819 , China
| | - Xu-Wei Chen
- Department of Chemistry, College of Science , Northeastern University , Shenyang 110819 , China
| | - Jian-Hua Wang
- Department of Chemistry, College of Science , Northeastern University , Shenyang 110819 , China
| |
Collapse
|
24
|
Jin S, Liu L, Zhou P. Amorphous titania modified with boric acid for selective capture of glycoproteins. Mikrochim Acta 2018; 185:308. [PMID: 29789967 DOI: 10.1007/s00604-018-2824-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/29/2018] [Indexed: 01/07/2023]
Abstract
Amorphous titania was modified with boric acid, and the resulting material was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction and X-ray photoelectron spectrometry. The new material, in contrast to conventional boronate affinity materials containing boronic acid ligands, bears boric acid groups. It is shown to exhibit high specificity for glycoproteins, and this was applied to design a method for solid phase extraction of glycoproteins as shown for ribonuclease B, horse radish peroxidase and ovalbumin. Glycoproteins were captured under slightly alkaline environment and released in acidic solutions. The glycoproteins extracted were detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The binding capacities for ribonuclease B, horse radish peroxidase and ovalbumin typically are 9.3, 26.0 and 53.0 mg ∙ g-1, respectively. The method was successfully applied to the selective enrichment of ovalbumin from egg white. Graphical abstract Schematic presentation of the capture of glycoproteins by amorphous titania modified with boric acid.
Collapse
Affiliation(s)
- Shanxia Jin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Liping Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Ping Zhou
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
25
|
Guo ZY, Hai X, Wang YT, Shu Y, Chen XW, Wang JH. Core–Corona Magnetic Nanospheres Functionalized with Zwitterionic Polymer Ionic Liquid for Highly Selective Isolation of Glycoprotein. Biomacromolecules 2017; 19:53-61. [DOI: 10.1021/acs.biomac.7b01231] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhi-Yong Guo
- Research
Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Xin Hai
- Research
Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yi-Ting Wang
- Research
Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yang Shu
- Institute
of Biotechnology, College of Life and Health Sciences, Northeastern University, Box H006, Shenyang 110169, China
| | - Xu-Wei Chen
- Research
Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research
Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
26
|
Xia N, Cheng C, Liu L, Peng P, Liu C, Chen J. Electrochemical glycoprotein aptasensors based on the in-situ aggregation of silver nanoparticles induced by 4-mercaptophenylboronic acid. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2488-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
27
|
Boronate-affinity based magnetic molecularly imprinted nanoparticles for the efficient extraction of the model glycoprotein horseradish peroxidase. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2373-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
28
|
Kowalewska A, Nowacka M, Włodarska M, Zgardzińska B, Zaleski R, Oszajca M, Krajenta J, Kaźmierski S. Solid-state dynamics and single-crystal to single-crystal structural transformations in octakis(3-chloropropyl)octasilsesquioxane and octavinyloctasilsesquioxane. Phys Chem Chem Phys 2017; 19:27516-27529. [DOI: 10.1039/c7cp05233b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Thermally induced formation of symmetric crystal lattices in functional POSS proceeds via different mechanisms and results in unique reversible phenomena.
Collapse
Affiliation(s)
- A. Kowalewska
- Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- 90-363 Łódź
- Poland
| | - M. Nowacka
- Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- 90-363 Łódź
- Poland
| | - M. Włodarska
- Institute of Physics
- Lodz University of Technology
- 90-924 Łódź
- Poland
| | - B. Zgardzińska
- Department of Nuclear Methods
- Institute of Physics
- Maria Curie-Sklodowska University
- 20-031 Lublin
- Poland
| | - R. Zaleski
- Department of Nuclear Methods
- Institute of Physics
- Maria Curie-Sklodowska University
- 20-031 Lublin
- Poland
| | - M. Oszajca
- Jagiellonian University
- Faculty of Chemistry
- 30-060 Kraków
- Poland
| | - J. Krajenta
- Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- 90-363 Łódź
- Poland
| | - S. Kaźmierski
- Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- 90-363 Łódź
- Poland
| |
Collapse
|