1
|
Sharma S, Mondal T. Recent Advances in Graphene-Polymer Nanocomposite-Based Flexible Sensors and Triboelectric Nanogenerators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501722. [PMID: 40344497 DOI: 10.1002/smll.202501722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/23/2025] [Indexed: 05/11/2025]
Abstract
Flexible sensors are uplifting many application segments with their versatility and ease of fabrication and integration. The amalgamation of functional fillers and polymers advances the field of flexible sensors. Various fillers are currently utilized to develop polymer nanocomposites for sensing applications. However, graphene-polymer nanocomposites find widespread applicability in flexible sensing applications due to the excellent properties of graphene, such as high electrical and thermal conductivity, 2D (2 dimensional) layered structure, and high aspect ratio. This review explores the potential of graphene-polymer nanocomposites as various sensors, including physical, chemical, electrochemical, triboelectric, and moisture-electric generator-based sensors. The technological advancements in developing these sensors are thoroughly discussed, followed by the various underlying sensing mechanisms. Also, the broad application areas where these sensors can be utilized are reviewed and discussed. The review critically assesses the advancements in the established sensing technologies based on graphene-polymer composites. Also, it discusses the challenges and new avenues that are yet to be addressed and explored, paving the way to develop next-generation flexible sensors for advanced applications.
Collapse
Affiliation(s)
- Simran Sharma
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur, 721302, India
| | - Titash Mondal
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur, 721302, India
| |
Collapse
|
2
|
Hu J, Wu A, Guo L, Feng Y, Liu L, Sun M, Qu A, Kuang H, Xu C, Xu L. Immunological strip sensor for the rapid determination of niacin in dietary supplements and foods. J Mater Chem B 2024; 12:691-700. [PMID: 38126510 DOI: 10.1039/d3tb02209a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Herein, four haptens of niacin (Vitamin B3, VB3) were designed, and after a series of experiments, it was concluded that hapten D had the best immune effect. To avoid false positives in the detection of real samples, a monoclonal antibody (mAb) against VB3 was prepared by a matrix effect-enhanced mAb screening method. The concentration of the inhibition rate reaching 50% (IC50) was 603.41 ng mL-1 and the limit of detection (LOD) using an indirect enzyme-linked immunosorbent assay (ic-ELISA) was 54.89 ng mL-1. A lateral flow immunochromatographic assay (LFIA) based on gold nanoparticles was established to detect the concentration of VB3 in compound vitamin B tablets and infant formulas, with a visual LOD of 5 μg mL-1. Using a handheld reader, the quantitative LOD was calculated to be 0.60 μg mL-1. The contents of the compound vitamin B tablets and infant formulas were also verified by liquid chromatography. Therefore, the LFIA developed in this study can be applied to the specific identification and rapid detection of niacin in nutritional dietary supplements, thus meeting the market's demand for efficient niacin detection methods.
Collapse
Affiliation(s)
- Jialin Hu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Aihong Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Lingling Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yongwei Feng
- Wuxi Food Safety Inspection and Test Center, Jiangsu, 214142, China
- Technology Innovation Center of Special Food for State Market Regulation, 35-302 South Changjiang Road, Jiangsu, 214142, China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Maozhong Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Aihua Qu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Liguang Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
3
|
Amjadi S, Akhoundian M, Alizadeh T. A simple method for melatonin determination in the presence of high levels of tryptophan using an unmodified carbon paste electrode and square wave anodic stripping voltammetry. ELECTROANAL 2022. [DOI: 10.1002/elan.202200210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Somayeh Amjadi
- University of Mohaghegh Ardabili Faculty of Basic Sciences IRAN (THE ISLAMIC REPUBLIC OF)
| | | | | |
Collapse
|
4
|
Reddy YVM, Shin JH, Palakollu VN, Sravani B, Choi CH, Park K, Kim SK, Madhavi G, Park JP, Shetti NP. Strategies, advances, and challenges associated with the use of graphene-based nanocomposites for electrochemical biosensors. Adv Colloid Interface Sci 2022; 304:102664. [PMID: 35413509 DOI: 10.1016/j.cis.2022.102664] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/18/2022] [Accepted: 04/04/2022] [Indexed: 12/29/2022]
Abstract
Graphene is an intriguing two-dimensional honeycomb-like carbon material with a unique basal plane structure, charge carrier mobility, thermal conductivity, wide electrochemical spectrum, and unusual physicochemical properties. Therefore, it has attracted considerable scientific interest in the field of nanoscience and bionanotechnology. The high specific surface area of graphene allows it to support high biomolecule loading for good detection sensitivity. As such, graphene, graphene oxide (GO), and reduced GO are excellent materials for the fabrication of new nanocomposites and electrochemical sensors. Graphene has been widely used as a chemical building block and/or scaffold with various materials to create highly sensitive and selective electrochemical sensing microdevices. Over the past decade, significant advancements have been made by utilizing graphene and graphene-based nanocomposites to design electrochemical sensors with enhanced analytical performance. This review focus on the synthetic strategies, as well as the structure-to-function studies of graphene, electrochemistry, novel multi nanocomposites combining graphene, limit of detection, stability, sensitivity, assay time. Finally, the review describes the challenges, strategies and outlook on the future development of graphene sensors technology that would be usable for the internet of things are also highlighted.
Collapse
|
5
|
Parshina AV, Safronova EY, Kolganova TS, Habtemariam GZ, Bobreshova OV. Perfluorosulfonic Acid Membranes with Functionalized Carbon Nanotubes in Potentiometric Sensors for the Analysis of Nicotinic Acid Pharmaceuticals. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Molecularly imprinted polymers for the extraction and determination of water-soluble vitamins: A review from 2001 to 2020. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Parshina AV, Habtemariam GZ, Kolganova TS, Safronova EY, Bobreshova OV. Potentiometric Multisensory System Based on MF-4SC Membranes and Surface Modified Oxides for Analysis of Nicotinic Acid Pharmaceuticals. MEMBRANES AND MEMBRANE TECHNOLOGIES 2021. [DOI: 10.1134/s2517751621030069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Alizadeh T, Shojaeianfar M, Reza Ganjali M. Preparation of a New Copper/Mercury‐Based Amalgam Electrode with Minimal Mercury Content and Its Application for the Determination of Azathioprine in Biological Fluids. ChemistrySelect 2021. [DOI: 10.1002/slct.202000546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Taher Alizadeh
- Department of Analytical Chemistry, Faculty of Chemistry University College of Science, University of Tehran Tehran, Iran, P.O. Box 14155-6455 Tehran Iran
| | - Moslem Shojaeianfar
- Department of Analytical Chemistry, Faculty of Chemistry University College of Science, University of Tehran Tehran, Iran, P.O. Box 14155-6455 Tehran Iran
| | - Mohammad Reza Ganjali
- Department of Analytical Chemistry, Faculty of Chemistry University College of Science, University of Tehran Tehran, Iran, P.O. Box 14155-6455 Tehran Iran
| |
Collapse
|
9
|
Parshina AV, Safronova EY, Habtemariam GZ, Ryzhikh EI, Prikhno IA, Bobreshova OV, Yaroslavtsev AB. Potentiometric Sensors Based on MF-4SC Membranes and Carbon Nanotubes for the Determination of Nicotinic Acid in Aqueous Solutions and Pharmaceuticals. MEMBRANES AND MEMBRANE TECHNOLOGIES 2020. [DOI: 10.1134/s2517751620040083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Alizadeh T, Sharifi AR, Ganjali MR. A new bio-compatible Cd2+-selective nanostructured fluorescent imprinted polymer for cadmium ion sensing in aqueous media and its application in bio imaging in Vero cells. RSC Adv 2020; 10:4110-4117. [PMID: 35492647 PMCID: PMC9048730 DOI: 10.1039/c9ra06910k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/21/2019] [Indexed: 11/21/2022] Open
Abstract
Schematic representation of Cd2+ recognition by the imprinted polymer and fluorescence signal creation as a result of the mentioned recognition process.
Collapse
Affiliation(s)
- Taher Alizadeh
- Department of Analytical Chemistry
- Faculty of Chemistry
- University College of Science
- University of Tehran
- Tehran
| | - Amir Reza Sharifi
- Department of Analytical Chemistry
- Faculty of Chemistry
- University College of Science
- University of Tehran
- Tehran
| | - Mohammad Reza Ganjali
- Department of Analytical Chemistry
- Faculty of Chemistry
- University College of Science
- University of Tehran
- Tehran
| |
Collapse
|
11
|
An enzyme-free sensing platform based on molecularly imprinted polymer/MWCNT composite for sub-micromolar-level determination of pyruvic acid as a cancer biomarker. Anal Bioanal Chem 2019; 412:657-667. [DOI: 10.1007/s00216-019-02273-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 10/05/2019] [Accepted: 11/11/2019] [Indexed: 11/25/2022]
|
12
|
Yang S, Bai C, Teng Y, Zhang J, Peng J, Fang Z, Xu W. Study of horseradish peroxidase and hydrogen peroxide bi-analyte sensor with boronate affinity-based molecularly imprinted film. CAN J CHEM 2019. [DOI: 10.1139/cjc-2019-0134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel electrochemical horseradish peroxidase (HRP) sensor was developed based on boronate affinity-based electropolymerized polythionine (PTh) molecularly imprinted polymer (MIP) as specific recognition element for HRP on gold nanoparticles (AuNPs) modified glassy carbon electrode, in which PTh acted as the electrochemical probe for the sensor. The sensor was characterized by scanning electron microscopy and electron dispersive spectroscopy. Electrochemical impedance spectroscopy, cyclic voltammetry, and differential pulse voltammetry were exploited for the study of the properties of the MIP sensor. The MIP sensor exhibited excellent linear response over the range of 2.0 × 10−10 mg/mL ∼ 1.0 × 10−7 mg/mL for HRP. In addition, with MIP film as HRP immobilized matrices, the sensor for the detection of H2O2 was developed with the MIP sensor based on the reduction of H2O2 catalyzed by HRP in the presence of electron mediator PTh. The sensor showed linear relationships between the current response and H2O2 concentration from 6.0 × 10−7 to 2.0 × 10−5 mol/L. HRP and H2O2 bi-analyte sensor based on MIP film was successfully developed in this work. The developed method can also be applicable for enzyme and its enzymatic substrate bi-analyte sensor.
Collapse
Affiliation(s)
- Shaoming Yang
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
| | - Chaopeng Bai
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
| | - Yu Teng
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
| | - Jian Zhang
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
| | - Jiaxi Peng
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
| | - Zhili Fang
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
| | - Wenyuan Xu
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
| |
Collapse
|
13
|
Highly selective extraction and voltammetric determination of the opioid drug buprenorphine via a carbon paste electrode impregnated with nano-sized molecularly imprinted polymer. Mikrochim Acta 2019; 186:654. [DOI: 10.1007/s00604-019-3736-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/02/2019] [Indexed: 01/16/2023]
|
14
|
Beluomini MA, da Silva JL, de Sá AC, Buffon E, Pereira TC, Stradiotto NR. Electrochemical sensors based on molecularly imprinted polymer on nanostructured carbon materials: A review. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Molecularly imprinted polymer nano-sphere/multi-walled carbon nanotube coated glassy carbon electrode as an ultra-sensitive voltammetric sensor for picomolar level determination of RDX. Talanta 2019; 194:415-421. [DOI: 10.1016/j.talanta.2018.10.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 11/20/2022]
|
16
|
Alizadeh T, Nayeri S, Mirzaee S. A high performance potentiometric sensor for lactic acid determination based on molecularly imprinted polymer/MWCNTs/PVC nanocomposite film covered carbon rod electrode. Talanta 2019; 192:103-111. [DOI: 10.1016/j.talanta.2018.08.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 11/29/2022]
|
17
|
Li S, Li J, Luo J, Xu Z, Ma X. A microfluidic chip containing a molecularly imprinted polymer and a DNA aptamer for voltammetric determination of carbofuran. Mikrochim Acta 2018; 185:295. [PMID: 29752543 DOI: 10.1007/s00604-018-2835-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/06/2018] [Indexed: 10/16/2022]
Abstract
An electrochemical microfluidic chip is described for the determination of the insecticide carbofuran. It is making use of a molecularly imprinted film (MIP) and a DNA aptamer as dual recognition units. The analyte (carbofuran) is transported to the MIP and captured at the identification site in the channel. Then, carbofuran is eluted with carbinol-acetic acid and transported to the DNA aptamer on the testing position of the chip. It is captured again, this time by the aptamer, and detected by differential pulse voltammetry (DPV). The dual recognition (by aptamer and MIP) results in outstanding selectivity. Additionally, graphene oxide-supported gold nanoparticles (GO-AuNPs) were used to improve the sensitivity of electrochemical detector. DPV response is linear in the 0.2 to 50 nM carbofuran concentration range at a potential of -1.2 V, with a 67 pM detection limit. The method has attractive features such as its potential for high throughput, high degree of automation, and high integration. Conceivably, the method may be extended to other analytes for which appropriate MIPs and aptamers are available. Graphical abstract Schematic of an electrochemical microfluidic chip for carbofuran detection based on a molecularly imprinted film (MIP) and a DNA aptamer as dual recognition units. In the chip, targets were recognized by MIP and aptamer, respectively. It shows promising potential for the design of electrochemical devices with high throughput, high automation, and high integration.
Collapse
Affiliation(s)
- Shuhuai Li
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China. .,Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China.
| | - Jianping Li
- College of Chemistry and Bioengineering, GuilinUniversity of Technology, Guilin, 541004, China
| | - Jinhui Luo
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China. .,Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China.
| | - Zhi Xu
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China
| | - Xionghui Ma
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China
| |
Collapse
|
18
|
Dechtrirat D, Yingyuad P, Prajongtat P, Chuenchom L, Sriprachuabwong C, Tuantranont A, Tang IM. A screen-printed carbon electrode modified with gold nanoparticles, poly(3,4-ethylenedioxythiophene), poly(styrene sulfonate) and a molecular imprint for voltammetric determination of nitrofurantoin. Mikrochim Acta 2018; 185:261. [PMID: 29687295 DOI: 10.1007/s00604-018-2797-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022]
Abstract
A molecularly imprinted polymer (MIP) and a nanocomposite prepared from gold nanoparticles (AuNP) and poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT:PSS) were deposited on a screen-printed carbon electrode (SPCE). The nanocomposite was prepared by one-pot simultaneous in-situ formation of AuNPs and PEDOT:PSS and was then inkjet-coated onto the SPCE. The MIP film was subsequently placed on the modified SPCE by co-electrodeposition of o-phenylenediamine and resorcinol in the presence of the antibiotic nitrofurantoin (NFT). Using differential pulse voltammetry (DPV), response at the potential of ~ 0.1 V (vs. Ag/AgCl) is linear in 1 nM to 1000 nM NFT concentration range, with a remarkably low detection limit (at S/N = 3) of 0.1 nM. This is two orders of magnitude lower than that of the control MIP sensor without the nanocomposite interlayer, thus showing the beneficial effect of AuNP-PEDOT:PSS. The electrode is highly reproducible (relative standard deviation 3.1% for n = 6) and selective over structurally related molecules. It can be re-used for at least ten times and was found to be stable for at least 45 days. It was successfully applied to the determination of NFT in (spiked) feed matrices and gave good recoveries. Graphical abstract Schematic representation of a voltammetric sensor for the determination of nitrofurantoin. The sensor is based on a screen-printed carbon electrode (SPCE) modified with an inkjet-printed gold nanoparticles-poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) nanocomposite and a molecularly imprinted polymer.
Collapse
Affiliation(s)
- Decha Dechtrirat
- Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand. .,Specialized Center of Rubber and Polymer Materials for Agriculture and Industry (RPM), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
| | - Peerada Yingyuad
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Pongthep Prajongtat
- Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Laemthong Chuenchom
- Department of Chemistry, Faculty of Science, Prince of Songkla University, Songkla, 90112, Thailand
| | - Chakrit Sriprachuabwong
- Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.,National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Adisorn Tuantranont
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - I-Ming Tang
- Computational and Applied Science for Smart Innovation Cluster (CLASSIC), Faculty of Science, King Mongkut's University of Technology, Bangkok, 10140, Thailand
| |
Collapse
|
19
|
Alizadeh T, Nayeri S. Electrocatalytic oxidation of salicylic acid at a carbon paste electrode impregnated with cerium-doped zirconium oxide nanoparticles as a new sensing approach for salicylic acid determination. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-3907-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Alizadeh T, Hamidi N, Ganjali MR, Rafiei F. Determination of subnanomolar levels of mercury (II) by using a graphite paste electrode modified with MWCNTs and Hg(II)-imprinted polymer nanoparticles. Mikrochim Acta 2017; 185:16. [PMID: 29594531 DOI: 10.1007/s00604-017-2534-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/09/2017] [Indexed: 11/30/2022]
Abstract
Mercury ion-imprinted polymer nanoparticles (Hg-IP-NPs) were synthesized via precipitation polymerization by using itaconic acid as a functional monomer. A carbon paste electrode was impregnated with the synthesized Hg-IP-NPs and MWCNTs to obtain a highly sensitive and selective electrode for determination of Hg(II). Mercury ion is first accumulated on the electrode surface via an open circuit procedure. After reduction of Hg(II) ions to its metallic form at a negative pre-potential, square wave anodic stripping voltammetry was applied to generate the electrochemical signal. The high affinity of the Hg-IP-NPs for Hg(II) was substantiated by comparing of the signals of electrodes with imprinted and non-imprinted polymer. The beneficial effect of MWCNTs on the voltammetric signal is also demonstrated. Under the optimized conditions and at a typical working potential of +0.05 V (vs. Ag/AgCl), the electrode has a linear response in the 0.1-20 nmol L-1 Hg(II) concentration range and a 29 pM detection limit. The electrochemical sensitivity is as high as 1441 A·M-1·cm-2 which is among the best values known. The electrode was applied to the determination of Hg(II) in water samples. Graphical abstract Schematic representation of the sensor electrode modified with mercury-imprinted polymer nanoparticles, and the recognition and voltammetric determination steps.
Collapse
Affiliation(s)
- Taher Alizadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
| | - Negin Hamidi
- Department of Analytical Chemistry, Faculty of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Mohamad Reza Ganjali
- Department of Analytical Chemistry, Faculty of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.,Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faride Rafiei
- Department of Analytical Chemistry, Faculty of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| |
Collapse
|