1
|
Dong JX, Xiao K, Wu XL, Zhong ZY, Yuan HY, Shen SG, Su M, Li N, Gao ZF, Xia F. High quantum yield copper nanoclusters integrated with nitrogen-doped carbon dots for off-on ratiometric fluorescence sensing of S 2- and Zn 2. Talanta 2025; 286:127565. [PMID: 39809068 DOI: 10.1016/j.talanta.2025.127565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Pursuing nanomaterials with high fluorescence quantum yields is of great significance in the fields of bioimaging, medical diagnosis, and food safety monitoring. This work reports on orange-emitting aggregation-induced emission (AIE) copper nanoclusters (Cu NCs) integrated with blue-emitting nitrogen-doped carbon dots (N-CDs), which enables highly sensitive detection of S2- and Zn2+ ions through an off-on ratiometric fluorescence method. The highly emissive Cu NCs was doped by Ce3+ with a high quantum yield of 51.30 % in aqueous solution. The S2- can induce fluorescence quenching of AIE Cu NCs/N-CDs from orange to blue, while Zn2+ can restore the orange fluorescence. The probe provided linear detection ranges of 0.5-170 μM for S2- and 0.05-200 μM for Zn2+, with detection limits of 0.17 μM and 0.02 μM, respectively. Moreover, a smartphone assistant ratiometric fluorescent test strips were developed for the rapid and visual detection of S2- and Zn2+. The AIE Cu NCs/N-CDs probe exhibited diverse fluorescence color responses, high fluorescence stability, and low cytotoxicity. The ratiometric system was successfully applied to the detection of S2- and Zn2+ in real water samples as well as in cellular and living imaging, demonstrating its potential in biochemical analysis and food safety monitoring.
Collapse
Affiliation(s)
- Jiang Xue Dong
- College of Chemistry and Materials Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding, 071002, PR China
| | - Kai Xiao
- College of Chemistry and Materials Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding, 071002, PR China
| | - Xiao Li Wu
- College of Chemistry and Materials Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding, 071002, PR China
| | - Zhi Ying Zhong
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Jiangxi Province Key Laboratory of New Drug Evaluation and Transformation, Nanchang, 330006, PR China
| | - Hao Yun Yuan
- College of Chemistry and Materials Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding, 071002, PR China
| | - Shi Gang Shen
- College of Chemistry and Materials Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding, 071002, PR China
| | - Ming Su
- College of Chemistry and Materials Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding, 071002, PR China
| | - Na Li
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Jiangxi Province Key Laboratory of New Drug Evaluation and Transformation, Nanchang, 330006, PR China.
| | - Zhong Feng Gao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China
| |
Collapse
|
2
|
Insights into ion-imprinted materials for the recovery of metal ions: Preparation, evaluation and application. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
3
|
Mohammad-Sadik Ali N, Karam A, Mukhopadhyay I. A comprehensive approach in perceiving the chelation of Cu(II) and Zn(II) with Alizarin Red S using pH-oscillotitrimetric and volumetric-oscillographic methods. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
4
|
Lee Y, Ahn S, Cho H, Ogunro V, Bae S. Solventless solid‐phase extraction using Zn ion‐imprinted polymer detected by colorimetric method. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yelin Lee
- Department of Chemistry Seoul Women's University Seoul Korea
| | - Soyoung Ahn
- Department of Chemistry Seoul Women's University Seoul Korea
| | - Hansang Cho
- Department of Mechanical and Engineering Science University of North Carolina‐Charlotte Charlotte North Carolina USA
| | - Vincent Ogunro
- Department of Civil and Environmental Engineering University of North Carolina‐Charlotte Charlotte North Carolina USA
| | - Sunyoung Bae
- Department of Chemistry Seoul Women's University Seoul Korea
| |
Collapse
|
5
|
Li Y, Liang H, Lin B, Yu Y, Wang Y, Zhang L, Cao Y, Guo M. A ratiometric fluorescence strategy based on inner filter effect for Cu 2+-mediated detection of acetylcholinesterase. Mikrochim Acta 2021; 188:385. [PMID: 34664146 DOI: 10.1007/s00604-021-05044-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/30/2021] [Indexed: 11/26/2022]
Abstract
A novel ratiometric fluorescence strategy for detection of acetylcholestinerase (AChE) is proposed based on carbon nitride quantum dots (g-CNQD) and the complex (PA) formed between phenylboronic acid (PBA) and alizarin red S (ARS). PA showed fluorescence at 598 nm and quenched the fluorescence of g-CNQD at 438 nm. Through UV-visible absorption, fluorescence, and fluorescence lifetime measurements, the quenching effect was demonstrated as inner filter effect (IFE). When Cu2+ was added, the coordination of ARS and Cu2+ decreased the fluorescence of PA at 598 nm and recovered that of g-CNQD at 438 nm. In the presence of AChE it catalyzed the hydrolysis of acetylthiocholine (ATCh) to produce thiocholine (TCh) which competed with ARS for binding to Cu2+; thus, the fluorescence at 598 nm increased and that at 438 nm decreased again. Under the mediation of Cu2+, the fluorescence ratio F598/F438 of PA-CNQD probe had good linear relationship with AChE concentration in the range 0.5-15 mU/mL with a detection limit of 0.36 mU/mL. The method was successfully applied to the determination of AChE in human serum and the screening of inhibitors.
Collapse
Affiliation(s)
- Yongying Li
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, No. 378 Waihuan West Road, University City, Guangzhou, 510006, Guangdong, China
| | - Haibo Liang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, No. 378 Waihuan West Road, University City, Guangzhou, 510006, Guangdong, China
| | - Bixia Lin
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, No. 378 Waihuan West Road, University City, Guangzhou, 510006, Guangdong, China.
| | - Ying Yu
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, No. 378 Waihuan West Road, University City, Guangzhou, 510006, Guangdong, China.
| | - Yumin Wang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, No. 378 Waihuan West Road, University City, Guangzhou, 510006, Guangdong, China
| | - Li Zhang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, No. 378 Waihuan West Road, University City, Guangzhou, 510006, Guangdong, China
| | - Yujuan Cao
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, No. 378 Waihuan West Road, University City, Guangzhou, 510006, Guangdong, China
| | - Manli Guo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, No. 378 Waihuan West Road, University City, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
6
|
Uygun HDE, Antep M, Demir MN, Merdivan M. Dispersive micro-solid-phase extraction using chitosan/polymethacrylate/clay bionanocomposite followed by UV–Vis spectrophotometry for determination of zinc. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01169-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Liu X, Wang Q, Wang Z, Liu X, Zhang M, Fan J, Zhou Z, Ren Z. Extraction of Rb(I) Ions from Aqueous Solution Using Novel Imprinting Materials. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xingwen Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Qi Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Zhuo Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Xueting Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Minghui Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Jiahui Fan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Zhiyong Zhou
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Zhongqi Ren
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| |
Collapse
|
8
|
Felix CS, Silva DG, Andrade HM, Riatto VB, Victor MM, Ferreira SL. An on-line system using ion-imprinted polymer for preconcentration and determination of bismuth in seawater employing atomic fluorescence spectrometry. Talanta 2018; 184:87-92. [DOI: 10.1016/j.talanta.2018.02.089] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 01/19/2023]
|