1
|
Hou Y, Chen R, Wang Z, Lu R, Wang Y, Ren S, Li S, Wang Y, Han T, Yang S, Zhou H, Gao Z. Bio-barcode assay: A useful technology for ultrasensitive and logic-controlled specific detection in food safety: A review. Anal Chim Acta 2023; 1267:341351. [PMID: 37257972 DOI: 10.1016/j.aca.2023.341351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023]
Abstract
Food safety is one of the greatest public health challenges. Developing ultrasensitive detection methods for analytes at ultra-trace levels is, therefore, essential. In recent years, the bio-barcode assay (BCA) has emerged as an effective ultrasensitive detection strategy that is based on the indirect amplification of various DNA probes. This review systematically summarizes the progress of fluorescence, PCR, and colorimetry-based BCA methods for the detection of various contaminants, including pathogenic bacteria, toxins, pesticides, antibiotics, and other chemical substances in food in over 120 research papers. Current challenges, including long experimental times and strict storage conditions, and the prospects for the application of BCA in biomedicine and environmental analyses, have also been discussed herein.
Collapse
Affiliation(s)
- Yue Hou
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, People's Republic of China; Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China
| | - Ruipeng Chen
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China
| | - Zhiguang Wang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, People's Republic of China; Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China
| | - Ran Lu
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China
| | - Yonghui Wang
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China
| | - Shuyue Ren
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China
| | - Shuang Li
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China
| | - Yu Wang
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China
| | - Tie Han
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China
| | - Shiping Yang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, People's Republic of China.
| | - Huanying Zhou
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China.
| | - Zhixian Gao
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, People's Republic of China.
| |
Collapse
|
2
|
Huang N, Sheng W, Bai D, Sun M, Ren L, Wang S, Zhang W, Jin Z. Multiplex bio-barcode based fluorometric immunoassay for simultaneous determination of zearalenone, fumonisin B1, ochratoxin A, and aflatoxin B1 in cereals. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
3
|
He F, Li T, Wang H, Du P, Wang W, Tan T, Liu Y, Wang S, Ma Y, Wang Y, Hu P, Abd El-Aty AM. Glucometer-based biosensor for the determination of ractopamine in animal-derived foods using rolling circle amplification. Mikrochim Acta 2023; 190:121. [PMID: 36890258 DOI: 10.1007/s00604-023-05715-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/21/2023] [Indexed: 03/10/2023]
Abstract
Screening for persistent organic pollutants (POPs) in food is a complex and challenging process, as POPs can be present in very low levels and can be difficult to detect. Herein, we developed an ultrasensitive biosensor based on a rolling circle amplification (RCA) platform using a glucometer to determine POP. The biosensor was constructed using gold nanoparticle probes modified with antibodies and dozens of primers, magnetic microparticle probes conjugated with haptens, and targets. After competition, RCA reactions are triggered, numerous RCA products hybridize with the ssDNA-invertase, and the target is successfully transformed into glucose. Using ractopamine as a model analyte, this strategy obtained a linear detection range of 0.038-5.00 ng mL-1 and a detection limit of 0.0158 ng mL-1, which was preliminarily verified by screening in real samples. Compared with conventional immunoassays, this biosensor utilizes the high efficiency of RCA and the portable properties of a glucometer, which effectively improves the sensitivity and simplifies the procedures using magnetic separation technology. Moreover, it has been successfully applied to ractopamine determination in animal-derived foods, revealing its potential as a promising tool for POP screening.
Collapse
Affiliation(s)
- Feng He
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Tengfei Li
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Haijie Wang
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Pengfei Du
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Weiting Wang
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Tianyu Tan
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Yaobo Liu
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Shoujing Wang
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yanli Ma
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yuanshang Wang
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Hu
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
4
|
Xu L, Zhang X, Abd El-Aty A, Wang Y, Cao Z, Jia H, Salvador JP, Hacimuftuoglu A, Cui X, Zhang Y, Wang K, She Y, Jin F, Zheng L, Pujia B, Wang J, Jin M, Hammock BD. A highly sensitive bio-barcode immunoassay for multi-residue detection of organophosphate pesticides based on fluorescence anti-quenching. J Pharm Anal 2022; 12:637-644. [PMID: 36105157 PMCID: PMC9463527 DOI: 10.1016/j.jpha.2022.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 11/05/2022] Open
Abstract
Balancing the risks and benefits of organophosphate pesticides (OPs) on human and environmental health relies partly on their accurate measurement. A highly sensitive fluorescence anti-quenching multi-residue bio-barcode immunoassay was developed to detect OPs (triazophos, parathion, and chlorpyrifos) in apples, turnips, cabbages, and rice. Gold nanoparticles were functionalized with monoclonal antibodies against the tested OPs. DNA oligonucleotides were complementarily hybridized with an RNA fluorescent label for signal amplification. The detection signals were generated by DNA-RNA hybridization and ribonuclease H dissociation of the fluorophore. The resulting fluorescence signal enables multiplexed quantification of triazophos, parathion, and chlorpyrifos residues over the concentration range of 0.01-25, 0.01-50, and 0.1-50 ng/mL with limits of detection of 0.014, 0.011, and 0.126 ng/mL, respectively. The mean recovery ranged between 80.3% and 110.8% with relative standard deviations of 7.3%-17.6%, which correlate well with results obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The proposed bio-barcode immunoassay is stable, reproducible and reliable, and is able to detect low residual levels of multi-residue OPs in agricultural products.
Collapse
Affiliation(s)
- Lingyuan Xu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuyuan Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - A.M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25240, Türkiye
| | - Yuanshang Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhen Cao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huiyan Jia
- Institute of Livestock and Poultry, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang, 315040, China
| | - J.-Pablo Salvador
- Nanobiotechnology for Diagnostics Group, Instituto de Química Avanzada de Cataluña, IQAC-CSIC, Barcelona, 08034, Spain,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25240, Türkiye
| | - Xueyan Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yudan Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kun Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fen Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lufei Zheng
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China,Corresponding author.
| | - Baima Pujia
- Inspection and Testing Center of Agricultural and Livestock Products of Tibet, Department of Agriculture and Rural Affairs of Tibet Autonomous Region, Lhasa, 850000, China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China,Department of Entomology & Nematology and the UC Davis Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA,Corresponding author. Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Bruce D. Hammock
- Department of Entomology & Nematology and the UC Davis Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA
| |
Collapse
|
5
|
|
6
|
Fauzi NIM, Fen YW, Omar NAS, Hashim HS. Recent Advances on Detection of Insecticides Using Optical Sensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:3856. [PMID: 34204853 PMCID: PMC8199770 DOI: 10.3390/s21113856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023]
Abstract
Insecticides are enormously important to industry requirements and market demands in agriculture. Despite their usefulness, these insecticides can pose a dangerous risk to the safety of food, environment and all living things through various mechanisms of action. Concern about the environmental impact of repeated use of insecticides has prompted many researchers to develop rapid, economical, uncomplicated and user-friendly analytical method for the detection of insecticides. In this regards, optical sensors are considered as favorable methods for insecticides analysis because of their special features including rapid detection time, low cost, easy to use and high selectivity and sensitivity. In this review, current progresses of incorporation between recognition elements and optical sensors for insecticide detection are discussed and evaluated well, by categorizing it based on insecticide chemical classes, including the range of detection and limit of detection. Additionally, this review aims to provide powerful insights to researchers for the future development of optical sensors in the detection of insecticides.
Collapse
Affiliation(s)
- Nurul Illya Muhamad Fauzi
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.I.M.F.); (N.A.S.O.)
| | - Yap Wing Fen
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.I.M.F.); (N.A.S.O.)
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Nur Alia Sheh Omar
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.I.M.F.); (N.A.S.O.)
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Hazwani Suhaila Hashim
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
7
|
Chen G, Liu G, Jia H, Cui X, Wang Y, Li D, Zheng W, She Y, Xu D, Huang X, Abd El-Aty AM, Sun J, Liu H, Zou Y, Wang J, Jin M, Hammock BD. A sensitive bio-barcode immunoassay based on bimetallic Au@Pt nanozyme for detection of organophosphate pesticides in various agro-products. Food Chem 2021; 362:130118. [PMID: 34082296 DOI: 10.1016/j.foodchem.2021.130118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022]
Abstract
Organophosphate pesticides (OPs) are often used as insecticides and acaricides in agriculture, thus improving yields. OP residues may pose a serious threat, duetoinhibitionof the enzymeacetylcholinesterase(AChE). Therefore, a competitive bio-barcode immunoassay was designed for simultaneous quantification of organophosphate pesticide residues using AuNP signal amplification technology and Au@Pt catalysis. The AuNP probes were labelled with antibodies and corresponding bio-barcodes (ssDNAs), MNP probes coated with ovalbumin pesticide haptens and Au@Pt probes functionalized with the complementary ssDNAs were then prepared. Subsequently, pesticides competed with MNP probes to bind the AuNP probes. The recoveries of the developed assay were ranged from 71.26 to 117.47% with RSDs from 2.52 to 14.52%. The LODs were 9.88, 3.91, and 1.47 ng·kg-1, for parathion, triazophos, and chlorpyrifos, respectively. The assay was closely correlated with the data obtained from LC-MS/MS. Therefore, the developed method has the potential to be used as an alternative approach for detection of multiple pesticides.
Collapse
Affiliation(s)
- Ge Chen
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs China, Key Lab Vegetables Quality and Safety Control, Institute of Vegetables & Flowers, Beijing 100081, China
| | - Guangyang Liu
- Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs China, Key Lab Vegetables Quality and Safety Control, Institute of Vegetables & Flowers, Beijing 100081, China
| | - Huiyan Jia
- Ningbo Academy of Agricultural Sciences, Ningbo, Zhengjiang 315040, China
| | - Xueyan Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuanshang Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dongyang Li
- Department of Entomology & Nematology and the UC Davis Comprehensive Cancer Center, Davis, University of California, CA 95616, USA
| | - Weijia Zheng
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Donghui Xu
- Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs China, Key Lab Vegetables Quality and Safety Control, Institute of Vegetables & Flowers, Beijing 100081, China
| | - Xiaodong Huang
- Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs China, Key Lab Vegetables Quality and Safety Control, Institute of Vegetables & Flowers, Beijing 100081, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey.
| | - Jianchun Sun
- Inspection and Testing Center of Agricultural and Livestock Products of Tibet, Lhasa 850000, China
| | - Haijin Liu
- Inspection and Testing Center of Agricultural and Livestock Products of Tibet, Lhasa 850000, China
| | - Yuting Zou
- Inspection and Testing Center of Agricultural and Livestock Products of Tibet, Lhasa 850000, China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Department of Entomology & Nematology and the UC Davis Comprehensive Cancer Center, Davis, University of California, CA 95616, USA.
| | - Bruce D Hammock
- Department of Entomology & Nematology and the UC Davis Comprehensive Cancer Center, Davis, University of California, CA 95616, USA
| |
Collapse
|
8
|
A visual bio-barcode immunoassay for sensitive detection of triazophos based on biochip silver staining signal amplification. Food Chem 2021; 347:129024. [PMID: 33461115 DOI: 10.1016/j.foodchem.2021.129024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 12/25/2022]
Abstract
Herein, a novel visual method for detecting triazophos based on competitive bio-barcode immunoassay was described. The competitive immunoassay was established by gold nanoparticles (AuNPs), magnetic microparticle (MMPs) and triazophos, combined with biochip hybridization system to detect the residual of triazophos in water and apple. Because AuNPs carried many bio-barcodes, which hybridized with labeled DNA on the biochip, catalyzed signal amplification using silver staining was detected by grayscale values as well as the naked eye. Notably, the grayscale values decreases with increasing the concentrations of triazophos, and the color change weakened gradually. The detection range was in between 0.05 and 10 ng/mL and the minimum detection limit was set at 0.04 ng/mL. Percent recovery calculated from spiked water and apple samples ranged between 55.4 and 107.8% with relative standard deviations (RSDs) of 12.4-24.9%. It has therefore been shown that this protocol provides a new insight for rapid detection of small molecule pesticides in various matrices.
Collapse
|
9
|
Yao J, Wang Z, Guo L, Xu X, Liu L, Xu L, Song S, Xu C, Kuang H. Advances in immunoassays for organophosphorus and pyrethroid pesticides. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116022] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Fang L, Liao X, Jia B, Shi L, Kang L, Zhou L, Kong W. Recent progress in immunosensors for pesticides. Biosens Bioelectron 2020; 164:112255. [DOI: 10.1016/j.bios.2020.112255] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
|
11
|
Huo B, Hu Y, Gao Z, Li G. Recent advances on functional nucleic acid-based biosensors for detection of food contaminants. Talanta 2020; 222:121565. [PMID: 33167261 DOI: 10.1016/j.talanta.2020.121565] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
It has seen increasing development of reliable, robust, and flexible biosensors for rapid food-safety analysis in the past few decades. Recently, functional nucleic acid-based biosensors have attracted attention because of their programmability, bottom-up characteristics, and structural switches. However, few systematic reviews devoted to categorizing the potential of DNA nanostructures and devices were found for detecting food contaminants. Hence, the applications of functional nucleic acid-based biosensors were reviewed for analyzing food contaminants, including foodborne pathogen bacteria, biotoxins, heavy metals, and et al. In addition to categorizing the various biosensors, multiple signal readout strategies, such as optical, electrochemical, and mass-based signals were also examined. Finally, the future changes and potential opportunities, as well as practical applications of functional nucleic acid-based biosensors were discussed.
Collapse
Affiliation(s)
- Bingyang Huo
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
12
|
Zhang C, Jiang Z, Jin M, Du P, Chen G, Cui X, Zhang Y, Qin G, Yan F, Abd El-Aty AM, Hacimüftüoğlu A, Wang J. Fluorescence immunoassay for multiplex detection of organophosphate pesticides in agro-products based on signal amplification of gold nanoparticles and oligonucleotides. Food Chem 2020; 326:126813. [PMID: 32438234 DOI: 10.1016/j.foodchem.2020.126813] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 02/26/2020] [Accepted: 04/13/2020] [Indexed: 02/02/2023]
Abstract
Herein, we developed a multi-analyte fluorescence immunoassay for detection of three organophosphate pesticides (triazophos, parathion, and chlorpyrifos) in various agro-products (rice, wheat, cucumber, cabbage, and apple) using fluorescently labeled oligonucleotide and gold nanoparticle (AuNP) signal amplification technology. The AuNP probes for the three analytes were constructed by simultaneously modifying the corresponding antibodies and fluorescently labeled oligonucleotides on the probe surface. Three fluorophores (6-FAM, Cy3, and Texas red) with high fluorescence intensity and little overlap of excitation/emission wavelengths were selected. The method showed satisfactory linearity for triazophos, parathion, and chlorpyrifos in the ranges of 0.01-20, 0.05-50, and 0.5-1000 μg/L, respectively. For the 3 analytes, the limits of detection (LODs) were 0.007, 0.009, and 0.087 μg/L, respectively. The average recoveries were 77.7-113.6%, with relative standard deviations (RSDs) of 7.1-17.1% in various food matrices. The proposed method offers great potential in food safety surveillance, and could be used as well as a reference for multi-residue analysis of other small-molecule contaminants.
Collapse
Affiliation(s)
- Chan Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Zejun Jiang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China.
| | - Pengfei Du
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan 250100, PR China
| | - Ge Chen
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Xueyan Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Yudan Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Guoxin Qin
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, PR China
| | - Feiyan Yan
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, PR China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey.
| | - Ahmet Hacimüftüoğlu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China.
| |
Collapse
|
13
|
Chemiluminescence imaging immunoassay for simultaneous determination of TBBPA-DHEE and TBBPA-MHEE in aquatic environments. Anal Bioanal Chem 2020; 412:3673-3681. [DOI: 10.1007/s00216-020-02604-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 01/19/2023]
|
14
|
Chen G, Jin M, Ma J, Yan M, Cui X, Wang Y, Zhang X, Li H, Zheng W, Zhang Y, Abd El-Aty AM, Hacımüftüoğlu A, Wang J. Competitive Bio-Barcode Immunoassay for Highly Sensitive Detection of Parathion Based on Bimetallic Nanozyme Catalysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:660-668. [PMID: 31804828 DOI: 10.1021/acs.jafc.9b06125] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A competitive sensitive bio-barcode immunoassay based on bimetallic nanozyme (Au@Pt: gold@platinum) catalysis has been designed for the detection of the pesticide parathion. Gold nanoparticles (AuNPs) were modified with single-stranded thiol oligonucleotides (ssDNAs) and monoclonal antibodies (mAbs) to form AuNP probes; magnetic nanoparticles (MNPs) were coated with ovalbumin (OVA)-parathion haptens as MNP probes, and bimetallic nanozyme (Au@Pt) nanoparticles functionalized with the complementary thiolated ssDNA were used as Au@Pt probes. The Au@Pt probes reacted with the AuNP probes through complementary base pairing. Further, parathion competed with MNP probes to bind the mAbs on the AuNP probes. Finally, the complex system was separated by a magnetic field. The released Au@Pt probes catalyzed a chromogenic system consisting of teramethylbenzidine (TMB). The bimetallic nanozyme-based bio-barcode immunoassay was performed on rice, pear, apple, and cabbage samples to verify the feasibility of the method. The immunoassay exhibited a linear response from 0.01 to 40 μg·kg-1, and the limit of detection (LOD) was 2.13 × 10-3 μg·kg-1. The recoveries and relative standard deviations (RSDs) ranged from 73.12 to 116.29% and 5.59 to 10.87%, respectively. The method was found to correlate well with data obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In conclusion, this method exhibits potential as a sensitive alternative method for the detection of a variety of pesticides, ensuring the safety of fruits and vegetables in agriculture.
Collapse
Affiliation(s)
- Ge Chen
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Quality and Safety , Ministry of Agriculture , Beijing 100081 , P.R. China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Quality and Safety , Ministry of Agriculture , Beijing 100081 , P.R. China
| | - Jun Ma
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Quality and Safety , Ministry of Agriculture , Beijing 100081 , P.R. China
| | - Mengmeng Yan
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Quality and Safety , Ministry of Agriculture , Beijing 100081 , P.R. China
| | - Xueyan Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Quality and Safety , Ministry of Agriculture , Beijing 100081 , P.R. China
| | - Yuanshang Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Quality and Safety , Ministry of Agriculture , Beijing 100081 , P.R. China
| | - Xiuyuan Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Quality and Safety , Ministry of Agriculture , Beijing 100081 , P.R. China
| | - Hui Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Quality and Safety , Ministry of Agriculture , Beijing 100081 , P.R. China
| | - Weijia Zheng
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Quality and Safety , Ministry of Agriculture , Beijing 100081 , P.R. China
| | - Yudan Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Quality and Safety , Ministry of Agriculture , Beijing 100081 , P.R. China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine , Cairo University , 12211 Giza , Egypt
- Department of Medical Pharmacology, Medical Faculty , Ataturk University , 25240 Erzurum , Turkey
| | - Ahmet Hacımüftüoğlu
- Department of Medical Pharmacology, Medical Faculty , Ataturk University , 25240 Erzurum , Turkey
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Quality and Safety , Ministry of Agriculture , Beijing 100081 , P.R. China
| |
Collapse
|
15
|
Lai W, Guo J, Wu Q, Chen Y, Cai Q, Wu L, Wang S, Song J, Tang D. A novel colorimetric immunoassay based on enzyme-regulated instant generation of Turnbull's blue for the sensitive determination of ochratoxin A. Analyst 2020; 145:2420-2424. [DOI: 10.1039/c9an02447f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The aim of this study was to develop a novel colorimetric sensing method based on enzyme-regulated instant generation of Turnbull's blue, serving as a chromogenic agent, for a sensitive immunoassay for the determination of ochratoxin A (OTA).
Collapse
Affiliation(s)
- Wenqiang Lai
- Key Laboratory of Modern Analytical Science and Separation Technology
- College of Chemistry
- Chemical Engineering and Environment
- Minnan Normal University
- Zhangzhou 363000
| | - Jiaqing Guo
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province
- College of Physics and Optoelectronic Engineering
- Shenzhen University
- Shenzhen 518060
- P R China
| | - Qingqing Wu
- Key Laboratory of Modern Analytical Science and Separation Technology
- College of Chemistry
- Chemical Engineering and Environment
- Minnan Normal University
- Zhangzhou 363000
| | - Yaomin Chen
- Key Laboratory of Modern Analytical Science and Separation Technology
- College of Chemistry
- Chemical Engineering and Environment
- Minnan Normal University
- Zhangzhou 363000
| | - Quanying Cai
- Key Laboratory of Modern Analytical Science and Separation Technology
- College of Chemistry
- Chemical Engineering and Environment
- Minnan Normal University
- Zhangzhou 363000
| | - Luxi Wu
- Key Laboratory of Modern Analytical Science and Separation Technology
- College of Chemistry
- Chemical Engineering and Environment
- Minnan Normal University
- Zhangzhou 363000
| | - Shuhan Wang
- Key Laboratory of Modern Analytical Science and Separation Technology
- College of Chemistry
- Chemical Engineering and Environment
- Minnan Normal University
- Zhangzhou 363000
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province
- College of Physics and Optoelectronic Engineering
- Shenzhen University
- Shenzhen 518060
- P R China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education & Fujian Province)
- Institute of Nanomedicine and Nanobiosensing
- Department of Chemistry
- Fuzhou University
- Fuzhou 350108
| |
Collapse
|
16
|
Assembly of 6-aza-2-thiothymine on gold nanoparticles for selective and sensitive colorimetric detection of pencycuron in water and food samples. Talanta 2019; 205:120087. [PMID: 31450484 DOI: 10.1016/j.talanta.2019.06.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022]
Abstract
A facile and novel nanosensor analytical strategy was developed for the colorimetric detection of pencycuron fungicide in rice, potato, cabbage, and water samples based on the pencycuron-induced aggregation of 6-aza-2-thiothymine-functionalized gold nanoparticles (ATT-AuNPs). The ATT-AuNPs exhibited good stability and were characterized with UV-visible spectroscopy, Fourier transform infrared (FT-IR) spectrometry, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential techniques. The addition of pencycuron facilitated strong non-covalent interactions (electrostatic, van der Waals, and H bonding) between pencycuron and ATT-AuNPs, inducing a significant red shift in the surface plasmon resonance (SPR) peak of ATT-AuNPs along with a color change from red to blue. A linear equation was established between absorption ratio (A720/A528) and pencycuron concentration (2.5-100 μM) with a correlation coefficient (R2) of 0.9915. The detection limit was calculated to be 0.42 μM, which was much lower than that of other analytical methods. The designed ATT-AuNP serves as a promising nanosensor for the rapid, simple, and selective label-free colorimetric detection of pencycuron in rice, potato, cabbage, and water samples, is highly sensitive, and does not require sophisticated instruments, tedious sample preparations, and time-consuming separation and pre-concentration procedures.
Collapse
|
17
|
Yang H, Xu W, Zhou Y. Signal amplification in immunoassays by using noble metal nanoparticles: a review. Mikrochim Acta 2019; 186:859. [DOI: 10.1007/s00604-019-3904-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022]
|
18
|
Cui X, Jin M, Zhang C, Du P, Chen G, Qin G, Jiang Z, Zhang Y, Li M, Liao Y, Wang Y, Cao Z, Yan F, Abd El-Aty AM, Wang J. Enhancing the Sensitivity of the Bio-barcode Immunoassay for Triazophos Detection Based on Nanoparticles and Droplet Digital Polymerase Chain Reaction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12936-12944. [PMID: 31670953 DOI: 10.1021/acs.jafc.9b05147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
An ultrasensitive bio-barcode competitive immunoassay method based on droplet digital polymerase chain reaction (ddPCR) was developed for the determination of triazophos. Gold nanoparticles (AuNPs) were coated with monoclonal antibodies (mAbs) and complementary double-stranded DNA (dsDNA), which included bio-barcode DNA and thiol-capped DNA. Magnetic nanoparticle (MNP) probes were constructed by modifying the MNPs with ovalbumin-hapten conjugates (OVA-hapten). The target pesticide and OVA-hapten on the surface of the MNP probes competed with the AuNP probes simultaneously, and then the bio-barcode DNA was released for quantification by ddPCR. The concentration of released DNA was inversely proportional to the concentration of pesticide to be tested. Under the optimum conditions, the competitive immunoassay exhibited a wide linear range of 0.01-20 ng/mL and a low detection limit of 0.002 ng/mL. Spike recovery tests were carried out using apple, rice, cabbage, and cucumber samples to verify the feasibility of the method. The recovery and relative standard deviations (RSDs) of the technique ranged from 76.9 to 94.4% and from 10.8 to 19.9%, respectively. To further validate the results, a linear correlation analysis was performed between the proposed method and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Consequently, the bio-barcode immunoassay based on nanoparticles and ddPCR, an ultrasensitive method, showed great potential for the determination of target pesticides in real samples.
Collapse
Affiliation(s)
- Xueyan Cui
- Institute of Quality Standard and Testing Technology for Agro-Products , Chinese Academy of Agricultural Science , Beijing 100081 , People's Republic of China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products , Chinese Academy of Agricultural Science , Beijing 100081 , People's Republic of China
| | - Chan Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products , Chinese Academy of Agricultural Science , Beijing 100081 , People's Republic of China
| | - Pengfei Du
- Institute of Agro-Food Science and Technology , Shandong Academy of Agricultural Sciences , Jinan , Shandong 250100 , People's Republic of China
| | - Ge Chen
- Institute of Quality Standard and Testing Technology for Agro-Products , Chinese Academy of Agricultural Science , Beijing 100081 , People's Republic of China
| | - Guoxin Qin
- Agro-Product Quality Safety and Testing Technology Research Institute , Guangxi Academy of Agricultural Sciences , Nanning , Guangxi 530007 , People's Republic of China
| | - Zejun Jiang
- Institute of Quality Standard and Testing Technology for Agro-Products , Chinese Academy of Agricultural Science , Beijing 100081 , People's Republic of China
| | - Yudan Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products , Chinese Academy of Agricultural Science , Beijing 100081 , People's Republic of China
| | - Mingjie Li
- Institute of Quality Standard and Testing Technology for Agro-Products , Chinese Academy of Agricultural Science , Beijing 100081 , People's Republic of China
| | - Yun Liao
- Institute of Quality Standard and Testing Technology for Agro-Products , Chinese Academy of Agricultural Science , Beijing 100081 , People's Republic of China
| | - Yuanshang Wang
- Institute of Quality Standard and Testing Technology for Agro-Products , Chinese Academy of Agricultural Science , Beijing 100081 , People's Republic of China
| | - Zhen Cao
- Institute of Quality Standard and Testing Technology for Agro-Products , Chinese Academy of Agricultural Science , Beijing 100081 , People's Republic of China
| | - Feiyan Yan
- Agro-Product Quality Safety and Testing Technology Research Institute , Guangxi Academy of Agricultural Sciences , Nanning , Guangxi 530007 , People's Republic of China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine , Cairo University , 12211 Giza , Egypt
- Department of Medical Pharmacology, Medical Faculty , Ataturk University , 25240 Erzurum , Turkey
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products , Chinese Academy of Agricultural Science , Beijing 100081 , People's Republic of China
| |
Collapse
|
19
|
Wang Y, Jin M, Chen G, Cui X, Zhang Y, Li M, Liao Y, Zhang X, Qin G, Yan F, Abd El-Aty A, Wang J. Bio-barcode detection technology and its research applications: A review. J Adv Res 2019; 20:23-32. [PMID: 31193255 PMCID: PMC6522771 DOI: 10.1016/j.jare.2019.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/11/2022] Open
Abstract
With the rapid development of nanotechnology, the bio-barcode assay (BCA), as a new diagnostic tool, has been gradually applied to the detection of protein and nucleic acid targets and small-molecule compounds. BCA has the advantages of high sensitivity, short detection time, simple operation, low cost, good repeatability and good linear relationship between detection results. However, bio-barcode technology is not yet fully formed as a complete detection system, and the detection process in all aspects and stages is unstable. Therefore, studying the optimal reaction conditions, optimizing the experimental steps, exploring the multi-residue detection of small-molecule substances, and preparing immuno-bio-barcode kits are important research directions for the standardization and commercialization of BCA. The main theme of this review was to describe the principle of BCA, provide a comparison of its application, and introduce the single-residue and multi-residue detection of macromolecules and single-residue detection of small molecules. We also compared it with other detection methods, summarized its feasibility and limitations, expecting that with further improvement and development, the technique can be more widely used in the field of stable small-molecule and multi-residue detection.
Collapse
Affiliation(s)
- Yuanshang Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Ge Chen
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Xueyan Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Yudan Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Mingjie Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Yun Liao
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Xiuyuan Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Guoxin Qin
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, PR China
| | - Feiyan Yan
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, PR China
| | - A.M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| |
Collapse
|
20
|
Colorimetric bio-barcode immunoassay for parathion based on amplification by using platinum nanoparticles acting as a nanozyme. Mikrochim Acta 2019; 186:339. [PMID: 31073796 DOI: 10.1007/s00604-019-3433-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/10/2019] [Indexed: 01/15/2023]
Abstract
A competitive bio-barcode immunoassay is described for the trace detection of parathion in water, pear, cabbage, and rice samples. It is based on amplification by platinum nanoparticle acting as a nanozyme. Gold nanoparticles (AuNPs) were modified with (a) monoclonal antibodies (mAbs) against parathion, and (b) thiolated single-stranded DNA (ssDNA) oligonucleotides. Magnetic nanoparticles (MNPs) were functionalized with ovalbumin coupled with parathion hapten. Parathion and its hapten compete with mAbs on the surface of the AuNPs. Subsequently, the platinum nanoparticles (PtNPs) probe, which was functionalized with the complementary thiolated ssDNA (C-ssDNA), was added to the reaction mixture for the detection of parathion. The signal was catalytically amplified by coupling with platinum nanozyme using teramethylbenzidine and H2O2 as the chromogenic system. The immunoassay has a linear range that extends from 0.01-50 μg·L-1, and the limit of detection is 2.0 × 10-3 μg·L-1. The recoveries and relative standard deviations (RSDs) ranged from 91.1-114.4% and 3.6-15.8%, respectively. The method correlates well with data obtained by gas chromatography-tandem mass spectrometry (GC-MS/MS). Graphical abstract The parathion and the magnetic nanoparticles (MNPs) labelled with hapten-OVA competitively reacted to AuNPs modified with mAbs and thiolated DNA for the detection of parathion. The signal was catalyzed by platinum nanozyme. The limit of detection for parathion is 2.0 ng·L-1.
Collapse
|
21
|
Wang K, Liu Z, Ding G, Li J, Vasylieva N, Li QX, Li D, Gee SJ, Hammock BD, Xu T. Development of a one-step immunoassay for triazophos using camel single-domain antibody-alkaline phosphatase fusion protein. Anal Bioanal Chem 2019; 411:1287-1295. [PMID: 30706076 DOI: 10.1007/s00216-018-01563-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 01/17/2023]
Abstract
Triazophos is mainly used in Asian and African countries for the control of insects in agricultural production. Camelid variable domains of heavy-chain antibodies (VHHs) show great promise in monitoring environmental chemicals such as pesticides. To improve the rate of success in the generation of VHHs against triazophos, genes specifically encoding VHH fragments from the unique allotype IgG3a of an immunized Camelus bactrianus were amplified by using a pair of novel primers and introduced to construct a diverse VHH library. Five out of seven isolated positive clones, including the VHH T1 with the highest affinity to triazophos, were derived from the allotype IgG3a. A one-step enzyme-linked immunosorbent assay (ELISA) using VHH T1 genetically fused with alkaline phosphatase (AP) had a half-maximum inhibition concentration of 6.6 ng/mL for triazophos. This assay showed negligible cross-reactivity with a list of important organophosphate pesticides (< 0.1%). The average recoveries of triazophos from water, soil, and apple samples determined by the one-step ELISA ranged from 83 to 108%, having a good correlation with those by a gas chromatography mass spectrometry (R2 = 0.99). The VHH-AP fusion protein shows potential for the analysis of triazophos in various matrices.
Collapse
Affiliation(s)
- Kai Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Zhiping Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Guochun Ding
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Ji Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Natalia Vasylieva
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, 96 Briggs Hall, Davis, CA, 95616, USA
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI, 96822, USA
| | - Dongyang Li
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, 96 Briggs Hall, Davis, CA, 95616, USA
| | - Shirley J Gee
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, 96 Briggs Hall, Davis, CA, 95616, USA
| | - Bruce D Hammock
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, 96 Briggs Hall, Davis, CA, 95616, USA
| | - Ting Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
22
|
|
23
|
Li H, Wang Y, Zha H, Dai P, Xie C. Reagentless Electrochemiluminescence Sensor for Triazophos Based on Molecular Imprinting Electropolymerized Poly(Luminol-p-Aminothiophenol) Composite-Modified Gold Electrode. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/s13369-018-3289-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Zhang C, Du P, Jiang Z, Jin M, Chen G, Cao X, Cui X, Zhang Y, Li R, Abd El-Aty A, Wang J. A simple and sensitive competitive bio-barcode immunoassay for triazophos based on multi-modified gold nanoparticles and fluorescent signal amplification. Anal Chim Acta 2018; 999:123-131. [DOI: 10.1016/j.aca.2017.10.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/20/2017] [Accepted: 10/26/2017] [Indexed: 12/20/2022]
|
25
|
Hong S, She Y, Cao X, Wang M, Zhang C, Zheng L, Wang S, Ma X, Shao H, Jin M, Jin F, Wang J. Biomimetic enzyme-linked immunoassay based on a molecularly imprinted 96-well plate for the determination of triazophos residues in real samples. RSC Adv 2018; 8:20549-20556. [PMID: 35542374 PMCID: PMC9080809 DOI: 10.1039/c8ra03531h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/23/2018] [Indexed: 11/21/2022] Open
Abstract
In this study, a direct competitive biomimetic enzyme-linked immune-sorbent assay (BELISA) based on a molecularly imprinted nanomembrane as an artificial antibody was developed for the determination of triazophos in real samples. The imprinted film was directly synthesized on the well surface of a 96-well plate using a dummy molecular template under the conditions of thermal polymerization. The developed BELISA using a hapten of triazophos as an enzyme-labeled probe is much more sensitive, simple, quick, steady and inexpensive than the other instrumental and immuno assay methods. Under optimal conditions, the linear range of the method was 0.001–10 000 μg L−1 with a good regression coefficient of 0.977. The sensitivity (IC50) and the limit of detection (LOD) of BELISA were 428 μg L−1 and 0.001 μg L−1, respectively. This method was performed to detect triazophos in cabbage and apple samples, and showed excellent recovery and relative standard deviations (RSDs) ranging from 70.5 to 119.8% and from 5.2 to 19.7%, respectively. The results correlated well with those obtained using high performance liquid chromatography-tandem mass spectrometry. In this study, a direct competitive biomimetic enzyme-linked immune-sorbent assay (BELISA) based on a molecularly imprinted nanomembrane as an artificial antibody was developed for the determination of triazophos in real samples.![]()
Collapse
|