1
|
Othman HO. Fe-Doped Red Fluorescent Carbon Dots for Caffeine Analysis in Energy Drinks Using a Paper-Based Sensor. J Fluoresc 2024:10.1007/s10895-024-04062-4. [PMID: 39666213 DOI: 10.1007/s10895-024-04062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
This study introduces a highly sensitive and selective method for detecting caffeine in energy drinks by using red florescence iron and nitrogen co doped carbon dots (Fe-NCDs) as a florescent prob. The Fe-NCDs were synthesized by using an eco-friendly hydrothermal. Providing uniform, quasi-spherical nanoparticles. The photoluminescence properties of the Fe-NCDs exhibit strong red emission making them suitable for fluorescence-based sensing. A microfluidic paper analytical device (µPAD) was developed and coupled with a smartphone-based detection system to facilitate portable, low-cost caffeine quantification. The Fe-NCDs were embedded in the µPADs, enabling fluorescence enhancement upon interaction with caffeine. This enhancement was quantitatively analyzed using the smartphone camera and ImageJ software, revealing a strong linear correlation in the range of 1 to 40 µg/mL when both Gray Value (G.V) and Red-Green-Blue (RGB) of reaction analyzed by the software. The limit of detection (LOD) was of 0.024 µg/mL and 0.032 µg/mL respectively for both applied principles. The methods indicate remarkable selectivity for caffeine, and was validated through accurate recovery studies in commercial samples. This innovative method provides a powerful, cost-effective, and environmentally sustainable solution for on-site caffeine detection in energy drinks, offering significant potential for application in food safety and quality control.
Collapse
Affiliation(s)
- Hazha Omar Othman
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq.
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq.
| |
Collapse
|
2
|
Thiruvengadam R, Easwaran M, Rethinam S, Madasamy S, Siddiqui SA, Kandhaswamy A, Venkidasamy B. Boosting plant resilience: The promise of rare earth nanomaterials in growth, physiology, and stress mitigation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108519. [PMID: 38490154 DOI: 10.1016/j.plaphy.2024.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/21/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
Rare earth elements (REE) have been extensively used in a variety of applications such as cell phones, electric vehicles, and lasers. REEs are also used as nanomaterials (NMs), which have distinctive features that make them suitable candidates for biomedical applications. In this review, we have highlighted the role of rare earth element nanomaterials (REE-NMs) in the growth of plants and physiology, including seed sprouting rate, shoot biomass, root biomass, and photosynthetic parameters. In addition, we discuss the role of REE-NMs in the biochemical and molecular responses of plants. Crucially, REE-NMs influence the primary metabolites of plants, namely sugars, amino acids, lipids, vitamins, enzymes, polyols, sorbitol, and mannitol, and secondary metabolites, like terpenoids, alkaloids, phenolics, and sulfur-containing compounds. Despite their protective effects, elevated concentrations of NMs are reported to induce toxicity and affect plant growth when compared with lower concentrations, and they not only induce toxicity in plants but also affect soil microbes, aquatic organisms, and humans via the food chain. Overall, we are still at an early stage of understanding the role of REE in plant physiology and growth, and it is essential to examine the interaction of nanoparticles with plant metabolites and their impact on the expression of plant genes and signaling networks.
Collapse
Affiliation(s)
- Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India
| | - Maheswaran Easwaran
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Senthil Rethinam
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Sivagnanavelmurugan Madasamy
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany; German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610, D-Quakenbrück, Germany
| | - Anandhi Kandhaswamy
- Post Graduate Research Department of Microbiology, Dhanalakshmi Srinivasan College of Arts and Science for Women (Autonomous), Perambalur, 621212, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral & Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
3
|
Cheremiskina A, Krasitskaya V, Generalov V, Frank L, Glukhov A, Kruchinina M, Kudrov G, Serdyuk D, Grabezhova V. Novel SOI-Biosensor Topology for the Detection of an Acute Myocardial Infarction Marker - Troponin I. Sovrem Tekhnologii Med 2024; 16:37-43. [PMID: 39421633 PMCID: PMC11482093 DOI: 10.17691/stm2024.16.1.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Indexed: 10/19/2024] Open
Abstract
A biosensor based on field-effect transistors on silicon-on-insulator structures (SOI-biosensor) is a high-potential device for detection of biological molecules, for instance, such as troponin I; the biosensor allows conducting label-free real-time analysis. The aim of the study is the development of SOI-biosensor design for detection of acute myocardial infarction marker - troponin I. A notable feature of this design was the integration of two grounding electrodes directly onto the biosensor surface, which effectively nullified the static potential of the liquid sample and minimized physical breakdowns of biosensor elements. Materials and Methods The highly specific anti-troponin I DNA aptamer was used as a receptor for specific detection of protein marker. Aptamer immobilization on the biosensor surface was carried out by physical adsorption. The analyzed range of target troponin I molecules concentration in the sample varied within 10-11 to 10-9 mol/L, mirroring clinical levels observed in myocardial infarction cases. During the experiment, a constant voltage of Vds=0.15 V was maintained. Results The developed SOI-biosensor successfully detected target troponin I molecules at a concentration of 10-11 mol/L. The detection process exhibited an effective time of approximately 200-300 s per sample. Moreover, analysis of the detection process revealed a noticeable decrease in current within the source-drain circuit, indicative of the negatively charged complex formed by troponin I and anti-troponin I DNA-aptamer at the "liquid sample-nanowire" phase interface.
Collapse
Affiliation(s)
- A.A. Cheremiskina
- Junior Researcher; Federal Budgetary Research Institution, State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk Region, 630559, Russia
| | - V.V. Krasitskaya
- Senior Researcher; Institute of Biophysics of the Siberian Branch of the Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 50/50 Bld., Akademgorodok St., Krasnoyarsk, 660036, Russia
| | - V.M. Generalov
- Leading Researcher; Federal Budgetary Research Institution, State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk Region, 630559, Russia; Professor, Faculty of Automation and Computer Engineering; Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russia
| | - L.A. Frank
- Chief Researcher; Institute of Biophysics of the Siberian Branch of the Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 50/50 Bld., Akademgorodok St., Krasnoyarsk, 660036, Russia
| | - A.V. Glukhov
- Deputy General Director for Research; Joint Stock Company “Novosibirsk Factory of Semiconductor Devices VOSTOK”, 60 Dachnaya St., Novosibirsk, 630082, Russia
| | - M.V. Kruchinina
- Associate Professor, Leading Researcher; Research Institute of Internal and Preventive Medicine — Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 175/1 B. Bogatkov St., Novosibirsk, 630089, Russia
| | - G.A. Kudrov
- Junior Researcher; Federal Budgetary Research Institution, State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk Region, 630559, Russia
| | - D.E. Serdyuk
- Design Engineer of Grade 2; ; Joint Stock Company “Novosibirsk Factory of Semiconductor Devices VOSTOK”, 60 Dachnaya St., Novosibirsk, 630082, Russia
| | - V.K. Grabezhova
- General Director; Joint Stock Company “Design Center for Biomicroelectronic Technologies Vega”, 60a Dachnaya St., Novosibirsk, 630082, Russia
| |
Collapse
|
4
|
Sobhanie E, Hosseini M, Faridbod F, Reza Ganjali M. Sensitive detection of H2O2 released from cancer cells with electrochemiluminescence sensor based on electrochemically prepared polypyrrole@Ce: Dy tungstate/polyluminol. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Ultrasensitive and rapid detection of methamphetamine in forensic biological fluids using fluorescent apta-nanobiosensors based on CdTe quantum dots. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
6
|
Wang YL, Zhao LZ, Chen C, Ren SW, Cao JT, Liu YM. A bipolar-electrochemiluminescence split-type immunoassay based on a cathodic amplification strategy. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
He L, Guo Y, Li Y, Zhu J, Ren J, Wang E. Aptasensors for Biomarker Detection. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822120048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Firoozbakhtian A, Hosseini M, Sheikholeslami MN, Salehnia F, Xu G, Rabbani H, Sobhanie E. Detection of COVID-19: A Smartphone-Based Machine-Learning-Assisted ECL Immunoassay Approach with the Ability of RT-PCR CT Value Prediction. Anal Chem 2022; 94:16361-16368. [DOI: 10.1021/acs.analchem.2c03502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Ali Firoozbakhtian
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran1439817435, Iran
| | - Morteza Hosseini
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran1439817435, Iran
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran1439817435, Iran
| | - Mahsa Naghavi Sheikholeslami
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran1439817435, Iran
| | - Foad Salehnia
- Departament d’Enginyeria Electrònica, Escola Tècnica Superior d’Enginyeria, Universitat Rovira i Virgili, Avinguda dels Països Catalans 26, 43007Tarragona, Spain
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
- University of Science and Technology of China, Hefei, Anhui230026, China
| | - Hodjattallah Rabbani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran1439817435, Iran
| | - Ebtesam Sobhanie
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran1439817435, Iran
| |
Collapse
|
9
|
Padmakumari Kurup C, Abdullah Lim S, Ahmed MU. Nanomaterials as signal amplification elements in aptamer-based electrochemiluminescent biosensors. Bioelectrochemistry 2022; 147:108170. [DOI: 10.1016/j.bioelechem.2022.108170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023]
|
10
|
Lima FMR, de Menezes AS, Maciel AP, Sinfrônio FSM, Kubota LT, Damos FS, Luz RCS. Zero-Biased Photoelectrochemical Detection of Cardiac Biomarker Myoglobin Based on CdSeS/ZnS Quantum Dots and Barium Titanate Perovskite. Molecules 2022; 27:molecules27154778. [PMID: 35897951 PMCID: PMC9330231 DOI: 10.3390/molecules27154778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/10/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular diseases are considered one of the leading causes of premature mortality of patients worldwide. Therefore, rapid diagnosis of these diseases is crucial to ensure the patient's survival. During a heart attack or severe muscle damage, myoglobin is rapidly released in the body to constitute itself as a precise biomarker of acute myocardial infarction. Thus, we described the photoelectrochemical immunosensor development to detect myoglobin. It was based on fluorine-doped tin oxide modified with CdSeS/ZnSe quantum dots and barium titanate (BTO), designated as CdSeS/ZnSQDS/BTO. It was characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and amperometry. The anodic photocurrent at the potential of 0 V (vs. Ag/AgCl) and pH 7.4 was found linearly related to the myoglobin (Mb) concentration from 0.01 to 1000 ng mL-1. Furthermore, the immunosensor showed an average recovery rate of 95.7-110.7% for the determination of myoglobin.
Collapse
Affiliation(s)
- Fernanda M. R. Lima
- Department of Chemistry, Federal University of Maranhão, São Luís 65080-805, Brazil; (F.M.R.L.); (A.P.M.)
| | - Alan S. de Menezes
- Department of Physics, Federal University of Maranhão, São Luís 65080-805, Brazil;
| | - Adeilton P. Maciel
- Department of Chemistry, Federal University of Maranhão, São Luís 65080-805, Brazil; (F.M.R.L.); (A.P.M.)
| | | | - Lauro T. Kubota
- Institute of Chemistry, State University of Campinas, Campinas 13083-970, Brazil;
| | - Flávio S. Damos
- Department of Chemistry, Federal University of Maranhão, São Luís 65080-805, Brazil; (F.M.R.L.); (A.P.M.)
- Correspondence: (F.S.D.); (R.C.S.L.)
| | - Rita C. S. Luz
- Department of Chemistry, Federal University of Maranhão, São Luís 65080-805, Brazil; (F.M.R.L.); (A.P.M.)
- Correspondence: (F.S.D.); (R.C.S.L.)
| |
Collapse
|
11
|
Hosseini M, Hashemian E, Salehnia F, Ganjali MR. Turn-on electrochemiluminescence sensing of melatonin based on graphitic carbon nitride nanosheets. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Komarova N, Panova O, Titov A, Kuznetsov A. Aptamers Targeting Cardiac Biomarkers as an Analytical Tool for the Diagnostics of Cardiovascular Diseases: A Review. Biomedicines 2022; 10:biomedicines10051085. [PMID: 35625822 PMCID: PMC9138532 DOI: 10.3390/biomedicines10051085] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
The detection of cardiac biomarkers is used for diagnostics, prognostics, and the risk assessment of cardiovascular diseases. The analysis of cardiac biomarkers is routinely performed with high-sensitivity immunological assays. Aptamers offer an attractive alternative to antibodies for analytical applications but, to date, are not widely practically implemented in diagnostics and medicinal research. This review summarizes the information on the most common cardiac biomarkers and the current state of aptamer research regarding these biomarkers. Aptamers as an analytical tool are well established for troponin I, troponin T, myoglobin, and C-reactive protein. For the rest of the considered cardiac biomarkers, the isolation of novel aptamers or more detailed characterization of the known aptamers are required. More attention should be addressed to the development of dual-aptamer sandwich detection assays and to the studies of aptamer sensing in alternative biological fluids. The universalization of aptamer-based biomarker detection platforms and the integration of aptamer-based sensing to clinical studies are demanded for the practical implementation of aptamers to routine diagnostics. Nevertheless, the wide usage of aptamers for the diagnostics of cardiovascular diseases is promising for the future, with respect to both point-of-care and laboratory testing.
Collapse
|
13
|
Development of novel aptasensor for ultra-sensitive detection of myoglobin via electrochemical signal amplification of methylene blue using poly (styrene)-block-poly (acrylic acid) amphiphilic copolymer. Talanta 2022; 237:122950. [PMID: 34736676 DOI: 10.1016/j.talanta.2021.122950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/25/2023]
Abstract
Amplification of electrochemical signal in order to betterment of limit of detection in determination of biomarkers has an important role in early detection of some dangerous diseases such as cancers. For this purpose, in this research, two types of poly (styrene)-block-poly (acrylic acid) amphiphilic copolymer (PS61-b-PAA596 and PS596-b-PAA61) were synthesized by controlled radical polymerization method via reversible addition-fragmentation chain transfer polymerization (RAFT) technique. Chemical structure of block copolymers was confirmed by FT-IR spectroscopy and their surface morphology was assessed by scanning electron microscopy (SEM). Self-assembly of these block copolymers into polymeric vesicles (polymersomes), loading and release efficiency of methylene blue as an electroactive indicator were investigated in DMF and THF solvents. On the basis of our findings PS61-b-PAA596 has better capability for loading and release of MB than PS596-b-PAA61. Then the obtained methylene blue-loaded polymersome successfully used for development of an aptasensor toward determination of trace amounts of myoglobin. The proposed aptasensor showed a wide linear range from 1.0 aM to 1.0 μM with an ultra-low detection limit of 0.73 aM. Applying this amplification strategy, determination of myoglobin in real samples was successfully performed.
Collapse
|
14
|
Asl SK, Rahimzadegan M. The recent progress in the early diagnosis of acute myocardial infarction based on myoglobin biomarker; nano-aptasensors approaches. J Pharm Biomed Anal 2022; 211:114624. [DOI: 10.1016/j.jpba.2022.114624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
|
15
|
Mohammad Beigia S, Mesgari F, Hossein M, Dastan D, Xu G. Electrochemiluminescence Sensors based on Lanthanide Nanomaterials as
Modifiers. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999200816123009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background: The rapid and increasing use of the nanomaterials in the development of
electrochemiluminescence (ECL) sensors is a significant area of study for its massive potential in the
practical application of nanosensor fabrication. Recently, nanomaterials (NMs) have been widely applied
in vast majority of ECL studies to remarkably amplify signals owing to their excellent conductivity,
large surface area and sometimes catalytic activity. Lanthanides, as f-block-based elements,
possess remarkable chemical and physical properties. This review covers the use of lanthanide NMs,
focusing on their use in ECL for signal amplification in sensing applications.
<p>
Methods: We present the recent advances in ECL nanomaterials including lanthanides NMs with a
particular emphasis on Ce, Sm, Eu and Yb. We introduce their properties along with applications in
different ECL sensors. A major focus is placed upon numerous research strategies for addressing the
signal amplification with lanthanide NMs in ECL.
<p>
Results: Lanthanide NMs as the amplification element can provide an ideal ECL platform for enhancing
the signal of a sensor due to their chemical and physical properties. Function of lanthanide
NMs on signal amplification remarkably depend on their large surface area to load sufficient signal
molecules, high conductivity to promote electron-transfer reaction.
<p>
Conclusion: ECL as a powerful analytical technique has been widely used in various aspects. As the
development of the nanotechnology and nanoscience, lanthanide nanomaterials have shown the remarkable
advantages in analytical applications due to their significant physical and chemical properties.
We predict that in the future, the demand for ECL sensors will be high due to their potential in a
diverse range of applications. Also, we expect the research in nanomaterial-based sensors will still
continue intensively and eventually become effectively routine analysis tools that could meet various
challenges.
Collapse
Affiliation(s)
- Sepideh Mohammad Beigia
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran,Iran
| | - Fazeleh Mesgari
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran,Iran
| | - Morteza Hossein
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran,Iran
| | - Davoud Dastan
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia-30332,United States
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022,China
| |
Collapse
|
16
|
Azzouz A, Hejji L, Sonne C, Kim KH, Kumar V. Nanomaterial-based aptasensors as an efficient substitute for cardiovascular disease diagnosis: Future of smart biosensors. Biosens Bioelectron 2021; 193:113617. [PMID: 34555756 DOI: 10.1016/j.bios.2021.113617] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/23/2021] [Accepted: 09/04/2021] [Indexed: 01/11/2023]
Abstract
As a major cause of deaths in developed countries, cardiovascular disease (CVD) has been a big burden for human health systems. Its early and rapid detection is crucial to efficiently apply appropriate on time therapy and to ultimately reduce the associated mortality rate. Aptamers, known as single-stranded DNA/RNA or oligonucleotides containing receptors and/or catalytic properties, have been widely employed in biodetection platforms due to their beneficial properties. Like antibodies, aptamers have served as artificial target receptors in affinity biosensors. Currently, advanced biosensors with improved sensitivity and specificity are fabricated by the synergistic combination of aptamers and diverse nanomaterials. Herein, we review the current development and applications of nanomaterial-based aptasensors for the recognition of CVD biomarkers with special emphasis on electrochemical and optical technologies. The performance of aptasensors has been assessed further in terms of key quality assurance metrics along with discussions on recent technologies developed for the amplification of signals with enhanced portability.
Collapse
Affiliation(s)
- Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | - Lamia Hejji
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | - Christian Sonne
- Aarhus University, Arctic Research Centre Department of Bioscience, Frederiksborgvej 399, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 133-791, South Korea.
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India.
| |
Collapse
|
17
|
Mesgari F, Salehnia F, Beigi SM, Hosseini M, Ganjali MR. Enzyme Free Electrochemiluminescence Sensor of Histamine Based on Graphite‐carbon Nitride Nanosheets. ELECTROANAL 2021. [DOI: 10.1002/elan.202100189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Fazeleh Mesgari
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science University of Tehran Tehran 1439817435 Iran
| | - Foad Salehnia
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science University of Tehran Tehran 1439817435 Iran
| | - Sepideh Mohammad Beigi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science University of Tehran Tehran 1439817435 Iran
| | - Morteza Hosseini
- Department of Life Science Engineering, Faculty of New Sciences & Technologies University of Tehran Tehran 1439817435 Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science University of Tehran Tehran 1439817435 Iran
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute Tehran University of Medical Sciences Tehran 1439817435 Iran
| |
Collapse
|
18
|
Bridle TG, Kumarathasan P, Gailer J. Toxic Metal Species and 'Endogenous' Metalloproteins at the Blood-Organ Interface: Analytical and Bioinorganic Aspects. Molecules 2021; 26:molecules26113408. [PMID: 34199902 PMCID: PMC8200099 DOI: 10.3390/molecules26113408] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/19/2021] [Accepted: 06/01/2021] [Indexed: 01/15/2023] Open
Abstract
Globally, human exposure to environmental pollutants causes an estimated 9 million deaths per year and it could also be implicated in the etiology of diseases that do not appear to have a genetic origin. Accordingly, there is a need to gain information about the biomolecular mechanisms that causally link exposure to inorganic environmental pollutants with distinct adverse health effects. Although the analysis of blood plasma and red blood cell (RBC) cytosol can provide important biochemical information about these mechanisms, the inherent complexity of these biological matrices can make this a difficult task. In this perspective, we will examine the use of metalloentities that are present in plasma and RBC cytosol as potential exposure biomarkers to assess human exposure to inorganic pollutants. Our primary objective is to explore the principal bioinorganic processes that contribute to increased or decreased metalloprotein concentrations in plasma and/or RBC cytosol. Furthermore, we will also identify metabolites which can form in the bloodstream and contain essential as well as toxic metals for use as exposure biomarkers. While the latter metal species represent useful biomarkers for short-term exposure, endogenous plasma metalloproteins represent indicators to assess the long-term exposure of an individual to inorganic pollutants. Based on these considerations, the quantification of metalloentities in blood plasma and/or RBC cytosol is identified as a feasible research avenue to better understand the adverse health effects that are associated with chronic exposure of various human populations to inorganic pollutants. Exposure to these pollutants will likely increase as a consequence of technological advances, including the fast-growing applications of metal-based engineering nanomaterials.
Collapse
Affiliation(s)
- Tristen G. Bridle
- Department of Chemistry, 2500 University Drive NW, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Premkumari Kumarathasan
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada;
| | - Jürgen Gailer
- Department of Chemistry, 2500 University Drive NW, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Correspondence:
| |
Collapse
|
19
|
Khonsari YN, Sun S. A novel MIP-ECL sensor based on RGO-CeO 2NP/Ru(bpy) 32+-chitosan for ultratrace determination of trimipramine. J Mater Chem B 2021; 9:471-478. [PMID: 33289771 DOI: 10.1039/d0tb01666g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel molecularly imprinted polymer (MIP)-electrochemiluminescence (MIP-ECL) sensor based on CeO2NP-RGO/Ru(bpy)32+-MIP-chitosan was introduced for the ultrasensitive and ultraselective detection of trimipramine (TRI). TRI-MIP was synthesized via the precipitation polymerization process. A nanocomposite of reduced graphene oxide decorated with ceria (CeO2NP-RGO) was synthesized through a facile sonochemical process. CeO2NP-RGO was utilized for modifying the surface of an electrode which consequently led to an excellent electrical conductivity, enhanced electrochemical and ECL characteristics of Ru(bpy)32+. Electrochemical and ECL behaviors of the MIP-ECL sensor were evaluated. Accordingly, the ECL intensity was significantly enhanced via TRI molecule adsorption on the MIP composite film. The prepared MIP-ECL sensor demonstrated high sensitivity and selectivity as well as good reproducibility and stability for TRI determination under the applied optimal conditions. The assays response for TRI concentration was linear in the range of 0.2-100 pM with a 0.995 correlation coefficient. The limit of detection (LOD) was as small as 0.025 pM (S/N = 3). The recoveries between 91-107% for human serum (RSDs < 4.1%) and 94-104.6% for human urine (RSDs < 3.4%) approve that the MIP-ECL sensor can be used for precise detection of TRI in complex biological matrices. Ultimately, this sensor was utilized successfully for the analysis of TRI in human serum and urine samples without any special pretreatment.
Collapse
Affiliation(s)
- Yasamin Nasiri Khonsari
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi, Dalian 116023, China
| | - Shiguo Sun
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
20
|
Fazlali F, Hashemi P, Khoshfetrat SM, Halabian R, Baradaran B, Johari-Ahar M, Karami P, Hajian A, Bagheri H. Electrochemiluminescent biosensor for ultrasensitive detection of lymphoma at the early stage using CD20 markers as B cell-specific antigens. Bioelectrochemistry 2020; 138:107730. [PMID: 33418212 DOI: 10.1016/j.bioelechem.2020.107730] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/26/2022]
Abstract
Herein, by taking advantage of the special binding of an aptamer to the membrane surface of a B cell and accumulation of the positive charges of a nanocomposite, including luminol-chitosan-platinum nanoparticles (L-Cs-Pt NPs), on the negatively charge of the aptamer phosphate backbone, a sensitive, simple, selective and rapid strategy for the detection of lymphoma cells by a new label-free electrogenerated chemiluminescence (ECL) aptasensor has been introduced. With increasing concentrations of B lymphoma cells, the nanocomposite detaches from the aptamer, leading to a decrease in the ECL of a luminol and H2O2 system. With high loading of luminol and Pt NPs on a chitosan, together with the electrocatalytic effect of Pt NPs, enhanced sensitive detection of cancer cells with a limit of detection of 31 cells/mL was achieved. Step-by-step modification and biosensor response to cancer cells was monitored by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and ECL. The aptasensor exhibited excellent specificity for lymphoma cells vs breast cancer (MCF-7) and human embryonic kidney (HEK293) cell lines as potential interferents. Finally, the performance of the aptasensor in blood samples was assessed against a commercial flow cytometric method. Satisfactory results confirmed the applicability of the proposed biosensing platform.
Collapse
Affiliation(s)
- Farnaz Fazlali
- Research and Development Department, Farin Behbood Tashkhis LTD, Tehran, Iran
| | - Pegah Hashemi
- Research and Development Department, Farin Behbood Tashkhis LTD, Tehran, Iran
| | | | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poising Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Johari-Ahar
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran; Biosensors and Bioelectronics Research Center (BBRC), Ardabil University of Medical Sciences, Ardabil, Iran
| | - Pari Karami
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran; Biosensors and Bioelectronics Research Center (BBRC), Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Hajian
- Institute of Sensor and Actuator Systems, TU Wien, Vienna, Austria
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Yousefi F, Movahedpour A, Shabaninejad Z, Ghasemi Y, Rabbani S, Sobnani-Nasab A, Mohammadi S, Hajimoradi B, Rezaei S, Savardashtaki A, Mazoochi M, Mirzaei H. Electrochemical-Based Biosensors: New Diagnosis Platforms for Cardiovascular Disease. Curr Med Chem 2020; 27:2550-2575. [DOI: 10.2174/0929867326666191024114207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 02/05/2023]
Abstract
One of the major reasons for mortality throughout the world is cardiovascular diseases.
Therefore, bio-markers of cardiovascular disease are of high importance to diagnose and manage procedure.
Detecting biomarkers provided a promising procedure in developing bio-sensors. Fast, selective,
portable, accurate, inexpensive, and sensitive biomarker sensing instruments will be necessary for
detecting and predicting diseases. One of the cardiac biomarkers may be ordered as C-reactive proteins,
lipoprotein-linked phospho-lipase, troponin I or T, myoglobin, interleukin-6, interleukin-1, tumor necrosis
factor alpha, LDL and myeloperoxidase. The biomarkers are applied to anticipate cardio-vascular
illnesses. Initial diagnoses of these diseases are possible by several techniques; however, they are laborious
and need costly apparatus. Current researches designed various bio-sensors for resolving the respective
issues. Electrochemical instruments and the proposed bio-sensors are preferred over other
methods due to its inexpensiveness, mobility, reliability, repeatability. The present review comprehensively
dealt with detecting biomarkers of cardiovascular disease through electro-chemical techniques.
Collapse
Affiliation(s)
- Fatemeh Yousefi
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Shabaninejad
- Department of Biological Sciences, Faculty of Nanotechnology, Tarbiat Modares University, Tehran, Iran
| | - Younes Ghasemi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Sobnani-Nasab
- Social Determinants of Health (SDH) Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behzad Hajimoradi
- Cardiology Department of Shohaday-e-Tajrish Hospital Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Samaneh Rezaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Mazoochi
- Department of Cardiology, Cardiac Electrophysiology Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
22
|
Miao D, Liu D, Zeng Y, Zhou G, Xie W, Yang Y, Wang H, Zhang J, Zhai Y, Zhang Z, Li L. Fluorescent aptasensor based on D-AMA/F-CSC for the sensitive and specific recognition of myoglobin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117714. [PMID: 31718976 DOI: 10.1016/j.saa.2019.117714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/23/2019] [Accepted: 10/26/2019] [Indexed: 05/26/2023]
Abstract
A novel fluorescent biosensor based on dabcyl [(E)-4-((4-(dimethylamino) phenyl) diazenyl)benzoic acid] -modified anti-Mb aptamer (D-AMA) and 6-FAM(6-carboxyfluorescein) -modified complementary short chain (F-CSC)for the specific and sensitive detection of Mb levels is presented in this study. In PBS buffer solution, D-AMA bound to F-CSC, and then dabcyl quenched the fluorescence of 6-FAM. After adding Mb into the system, D-AMA bound to Mb and separated from F-CSC. The fluorescence of 6-FAM was restored after it separated from dabcyl. The assay exhibited high specificity and sensitivity toward Mb, with a low limit of detection of 0.07 ng/mL (S/N = 3) and linear relationships of 0.1-5 ng/mL. It was further applied to detect Mb levels in spiked human blood sera samples.
Collapse
Affiliation(s)
- Dongwei Miao
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213016, Jiangsu, China; College of Biological, Chemical Sciences and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, Zhejiang, China
| | - Dongkui Liu
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213016, Jiangsu, China; College of Biological, Chemical Sciences and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, Zhejiang, China
| | - Yanbo Zeng
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, Zhejiang, China
| | - Guobao Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, Zhejiang, China
| | - Wei Xie
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213016, Jiangsu, China; College of Biological, Chemical Sciences and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, Zhejiang, China
| | - Yiwen Yang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, Zhejiang, China.
| | - Hailong Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, Zhejiang, China
| | - Jian Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, Zhejiang, China
| | - Yunyun Zhai
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, Zhejiang, China
| | - Zulei Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, Zhejiang, China
| | - Lei Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, Zhejiang, China.
| |
Collapse
|
23
|
Du C, Ma C, Gu J, Li L, Chen G. Fluorescence Sensing of Caffeine in Tea Beverages with 3,5-diaminobenzoic Acid. SENSORS 2020; 20:s20030819. [PMID: 32028737 PMCID: PMC7038766 DOI: 10.3390/s20030819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/21/2020] [Accepted: 01/31/2020] [Indexed: 02/05/2023]
Abstract
A rapid, selective and sensitive method for the detection of caffeine in tea infusion and tea beverages are proposed by using 3,5-diaminobenzoic acid as a fluorescent probe. The 3,5-diaminobenzoic acid emits strong fluorescence around 410 nm under the excitation of light at 280 nm. Both the molecular electrostatic potential analysis and fluorescent lifetime measurement proved that the existence of caffeine can quench the fluorescence of 3,5-diaminobenzoic acid. Under the optimal experimental parameters, the 3,5-diaminobenzoic acid was used as a fluorescent probe to detect the caffeine aqueous solution. There exists a good linear relationship between the fluorescence quenching of the fluorescent probe and the concentration of caffeine in the range of 0.1–100 μM, with recovery within 96.0 to 106.2%, while the limit of detection of caffeine is 0.03 μM. This method shows a high selectivity for caffeine. The caffeine content in different tea infusions and tea beverages has been determined and compared with the results from HPLC measurement.
Collapse
Affiliation(s)
- Chenxu Du
- School of Science, Jiangnan University, Wuxi 214122, China; (C.D.); (C.M.); (J.G.); (L.L.)
| | - Chaoqun Ma
- School of Science, Jiangnan University, Wuxi 214122, China; (C.D.); (C.M.); (J.G.); (L.L.)
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
| | - Jiao Gu
- School of Science, Jiangnan University, Wuxi 214122, China; (C.D.); (C.M.); (J.G.); (L.L.)
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
| | - Lei Li
- School of Science, Jiangnan University, Wuxi 214122, China; (C.D.); (C.M.); (J.G.); (L.L.)
| | - Guoqing Chen
- School of Science, Jiangnan University, Wuxi 214122, China; (C.D.); (C.M.); (J.G.); (L.L.)
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
- Correspondence: ; Tel.: +86-139-0617-6695
| |
Collapse
|
24
|
Negahdary M. Aptamers in nanostructure-based electrochemical biosensors for cardiac biomarkers and cancer biomarkers: A review. Biosens Bioelectron 2020; 152:112018. [PMID: 32056737 DOI: 10.1016/j.bios.2020.112018] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/16/2019] [Accepted: 01/09/2020] [Indexed: 01/01/2023]
Abstract
Heart disease (especially myocardial infarction (MI)) and cancer are major causes of death. Recently, aptasensors with the applying of different nanostructures have been able to provide new windows for the early and inexpensive detection of these deadly diseases. Early, inexpensive, and accurate diagnosis by portable devices, especially aptasensors can increase the likelihood of survival as well as significantly reduce the cost of treatment. In this review, recent studies based on the designed aptasensors for the diagnosis of these diseases were collected, ordered, and reviewed. The biomarkers for the diagnosis of each disease were discussed separately. The primary constituent elements of these aptasensors including, analyte, aptamer sequence, type of nanostructure, diagnostic technique, analyte detection range, and limit of detection (LOD), were evaluated and compared.
Collapse
Affiliation(s)
- Masoud Negahdary
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
25
|
Zou B, Cheng H, Tu Y. An electrochemiluminescence immunosensor for myoglobin using an indium tin oxide glass electrode modified with gold nanoparticles and platinum nanowires. Mikrochim Acta 2019; 186:598. [DOI: 10.1007/s00604-019-3703-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/13/2019] [Indexed: 11/30/2022]
|
26
|
Enhanced electrochemiluminescence of Ru(bpy)32+ by Sm2O3 nanoparticles decorated graphitic carbon nitride nano-sheets for pyridoxine analysis. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.05.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Habibi-Kool-Gheshlaghi M, Faridbod F, Mosammam MK, Ganjali MR. Electroanalysis of Tricyclic Psychotropic Drugs using Modified Electrodes. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180917112548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background:
Tricyclic psychotropic drugs are defined as a tricyclic rings of the dibenzazepine
group with the presence of sulfur and nitrogen atoms. They have been prescribed for antidepressive
therapy over the years. Due to their medical importance, many analytical methods have
been developed for their monitoring. However, benefits of electrochemical techniques such as costeffectiveness,
fast, easy operation and non-destructiveness make them appropriate analytical methods
for drug assays. Electrochemical determinations of pharmaceuticals require suitable working electrodes.
During years, many electrodes are modified by a variety of modifiers and several sensors
were developed based on them. In this regard, nanomaterials, due to their remarkable properties, are
one of the most important choices.
Objective:
Here, the application of electroanalytical methods in the determination of electroactive tricyclic
psychotropic drugs will be reviewed and the nanomaterials which are used for improvements
of the working electrodes will be considered.
Collapse
Affiliation(s)
- Mona Habibi-Kool-Gheshlaghi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Farnoush Faridbod
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mahya Karami Mosammam
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
28
|
Fluorometric determination of cardiac myoglobin based on energy transfer from a pyrene-labeled aptamer to graphene oxide. Mikrochim Acta 2019; 186:287. [PMID: 30989406 DOI: 10.1007/s00604-019-3385-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/29/2019] [Indexed: 12/30/2022]
Abstract
The authors describe a fluorometric assay for cardiac myoglobin (Mb), a marker for myocardial infarction. An Mb-binding aptamer was labeled with pyrene and adsorbed on the surface of graphene oxide (GO) via noncovalent and reversible binding forces. This causes the fluorescence of pyrene (best measured at excitation/emission wavelengths of 275/376 nm) to be quenched. However, fluorescence is restored on addition of pyrene due to the strong affinity between Mb and aptamer which causes its separation from GO. Fluorescence increases linearly in the 5.6-450 pM Mb concentration range, and the lower detection limit is 3.9 pM (S/N = 3). The assay was applied to the determination of cardiac Mb in spiked serum, and satisfactory results were obtained. Graphical abstract Schematic presentation of the detection of Mb (cardiac myoglobin) by using a fluorometric method based on pyrene-modified anti-Mb aptamer and GO (graphene oxide) through fluorescence quenching and subsequent recovery.
Collapse
|
29
|
Saremi M, Amini A, Heydari H. An aptasensor for troponin I based on the aggregation-induced electrochemiluminescence of nanoparticles prepared from a cyclometallated iridium(III) complex and poly(4-vinylpyridine-co-styrene) deposited on nitrogen-doped graphene. Mikrochim Acta 2019; 186:254. [PMID: 30903376 DOI: 10.1007/s00604-019-3352-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/04/2019] [Indexed: 01/16/2023]
Abstract
An ultrasensitive electrochemiluminescence (ECL) disposable aptamer sensor (aptasensor) is presented for detection of myocardial infarction biomarker by quantification of troponin I in blood serum. A screen-printed electrode was modified with (a) aptamer-modified gold nanoparticles, (b) cyclometallated iridium(III)-poly-4-vinylpyridine nanoparticles, and (c) nitrogen-doped graphene in order to increase the loading capacity and conductivity of the aptasensor. If the aptasensor is exposed to troponin I, it will bind to the aptamer and desorb the aptamer from gold nanoparticles and the surface of the electrode. This generates an enhancement in ECL emission depending on troponin I concentration. ECL emission is strongly improved by aggregation-induced phenomenon, which is caused by inhibition of the water and oxygen quenching effect on the iridium complex ECL in aqueous media. Under optimum conditions, the aptasensor has a wide dynamic range that extends from 0.1 pM to 10 nM, with a 20 fM detection limit (S/N = 3) and a relative standard deviation of 3.1%. The ECL aptasensor was successfully applied to 20 individual human serum for the detection of troponin I biomarker. Graphical abstract Schematic presentation of electrochemiluminescence aptamer assay fabrication for detection of Troponin I. Carbon screen printed electrode (CSPE) was modified with nitrogen doped graphene (NG), gold nanoparticles (AuNPs), cyclometallated iridium(III)-polyvinylpyridine polymer nanoparticles, ionic liquid and bovine serum albumin.
Collapse
Affiliation(s)
- Mohammad Saremi
- Department of Electrical Engineering, College of Technical and Engineering, West Tehran Branch, Islamic Azad University, Tehran, 1461988631, Iran
| | - Amir Amini
- Department of Electrical Engineering, College of Technical and Engineering, West Tehran Branch, Islamic Azad University, Tehran, 1461988631, Iran.
| | - Hamid Heydari
- Department of Electrical Engineering, College of Technical and Engineering, West Tehran Branch, Islamic Azad University, Tehran, 1461988631, Iran
| |
Collapse
|
30
|
A liquid crystal based method for detection of urease activity and heavy metal ions by using stimulus-responsive surfactant-encapsulated phosphotungstate clusters. Mikrochim Acta 2018; 186:27. [PMID: 30564901 DOI: 10.1007/s00604-018-3132-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
Abstract
A liquid crystal (LC) based method is described for the sensitive determination of the activity of urease and of heavy metal ions which acts as inhibitors. Stimulus-responsive surfactant-encapsulated phosphotungstate clusters (SECs) were fabricated and deposited onto octadecyltrichlorosilane-coated glass. A copper TEM grid filled with LCs was placed on the substrate to construct the LC optical cell. Upon addition of water to the LC interface, the optical appearance of LCs on the glass undergoes a bright-to-dark shift due to an orientational transition of the LCs from a planar to a homeotropic state. However, the LCs display a bright appearance if they are pretreated with an aqueous solution containing urea and urease. This is caused by the disassemby of the SECs from the glass surface due to an increase of the pH value that is induced by the enzymatic hydrolysis of urea by urease. The method is highly sensitive and can detect urease activities as low as 0.03 mU/mL. It can also be applied to the determination of heavy metal ions which exert an inhibitory effect on the activity of urease. For example, Cu(II) can be quantified via urease inhibition in 1 nM concentration. Graphical abstract Schematic presentation of a liquid crystal-based sensor for detection of urease and heavy metal ions by using stimulus-responsive surfactant-encapsulated phosphotungstate clusters.
Collapse
|
31
|
Electrochemiluminescent biosensor with DNA link for selective detection of human IgG based on steric hindrance. Talanta 2018; 194:745-751. [PMID: 30609601 DOI: 10.1016/j.talanta.2018.10.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/27/2018] [Accepted: 10/27/2018] [Indexed: 12/13/2022]
Abstract
A highly selective DNA-based electrochemiluminescence (ECL) based biosensor is described for the detection of human IgG. It is exploiting the effect of steric hindrance that affects the strength of the ECL signal in the presence of IgG. Digoxin-linked signaling DNA was specifically bound to IgG, and this causes steric hindrance which limits the ability of DNA to hybridize with capturing DNA attached to a gold electrode. Europium (II) doped CdSe quantum dots were covalently linked to the DNA in order to generate the ECL signal. Using this steric hindrance hybridization method, the ECL signal of the biosensor were proportional to the concentration of IgG with a wide linear range and a 14 pM detection limit. Conceivably, the method can be expanded to the detection of a wide range of proteins for which homologous recognition elements are available.
Collapse
|
32
|
Farzin L, Shamsipur M, Samandari L, Sheibani S. Recent advances in designing nanomaterial based biointerfaces for electrochemical biosensing cardiovascular biomarkers. J Pharm Biomed Anal 2018; 161:344-376. [PMID: 30205301 DOI: 10.1016/j.jpba.2018.08.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023]
Abstract
Early diagnosis of cardiovascular disease (CVD) is critically important for successful treatment and recovery of patients. At present, detection of CVD at early stages of its progression becomes a major issue for world health. The nanoscale electrochemical biosensors exhibit diverse outstanding properties, rendering them extremely suitable for the determination of CVD biomarkers at very low concentrations in biological fluids. The unique advantages offered by electrochemical biosensors in terms of sensitivity and stability imparted by nanostructuring the electrode surface together with high affinity and selectivity of bioreceptors have led to the development of new electrochemical biosensing strategies that have introduced as interesting alternatives to conventional methodologies for clinical diagnostics of CVD. This review provides an updated overview of selected examples during the period 2005-2018 involving electrochemical biosensing approaches and signal amplification strategies based on nanomaterials, which have been applied for determination of CVD biomarkers. The studied CVD biomarkers include AXL receptor tyrosine kinase, apolipoproteins, cholesterol, C-reactive protein (CRP), D-dimer, fibrinogen (Fib), glucose, insulin, interleukins, lipoproteins, myoglobin, N-terminal pro-B-type natriuretic peptide (BNP), tumor necrosis factor alpha (TNF-α) and troponins (Tns) on electrochemical transduction format. Identification of new specific CVD biomarkers, multiplex bioassay for the simultaneous determination of biomarkers, emergence of microfluidic biosensors, real-time analysis of biomarkers and point of care validation with high sensitivity and selectivity are the major challenges for future research.
Collapse
Affiliation(s)
- Leila Farzin
- Radiation Application Research School, Nuclear Science and Technology Research Institute, 11365-3486, Tehran, Iran.
| | - Mojtaba Shamsipur
- Department of Chemistry, Razi University, 67149-67346, Kermanshah, Iran.
| | - Leila Samandari
- Department of Chemistry, Razi University, 67149-67346, Kermanshah, Iran
| | - Shahab Sheibani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, 11365-3486, Tehran, Iran
| |
Collapse
|
33
|
Hamtak M, Fotouhi L, Hosseini M, Reza Ganjali M. Sensitive Nonenzymatic Electrochemiluminescence Determination of Hydrogen Peroxide in Dental Products using a Polypyrrole/Polyluminol/Titanium Dioxide Nanocomposite. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1483940] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Maryam Hamtak
- Department of Chemistry, Alzahra University, Tehran, Iran
| | - Lida Fotouhi
- Department of Chemistry, Alzahra University, Tehran, Iran
| | - Morteza Hosseini
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry College of Science, University of Tehran, Tehran, Iran
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Nanostructured aptamer-based sensing platform for highly sensitive recognition of myoglobin. Mikrochim Acta 2018; 185:333. [PMID: 29931498 DOI: 10.1007/s00604-018-2860-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/04/2018] [Indexed: 10/28/2022]
Abstract
A composite was prepared from PtSn nanoparticles and carbon nanotubes (PtSnNP/CNTs) and applied to the electrochemical determination of myoglobin (Mb). An Mb-aptamer was immobilized on a glassy carbon electrode (GCE), and hexcyanoferrate was used as an electrochemical probe. The PtSnNP/CNTs were synthesized by a microwave-aided ethylene glycol reduction method. Detection is based on electron transfer inhibition that is caused by the folding and conformational change of the Mb-aptamer in the presence of Mb. The amperometric signal for hexacyanoferrate, best measured at 0.2 V vs. Ag/AgCl depends on the concentration of Mb that interacts with the aptamer on the GCE. This approach is selective and sensitive for Mb due to (a) the highly specific recognition ability of the aptamer for Mb, (b) the powerful electronic properties of carbon nanotubes, (c) the arranged decoration of CNTs with PtSnNPs, and (d), the superior electron transfer to hexacyanoferrate. The assay is highly selective, with linear relationships from 0.01-1 nM and 10 nM-200 nM, and a limit of detection as low as 2.2 ± 0.1 pM. The modified GCE was applied to the quantitation of Mb in spiked human serum samples. Graphical abstract Schematic illustration of the method for Mb detection.
Collapse
|
35
|
Eivazzadeh-Keihan R, Pashazadeh-Panahi P, Baradaran B, Maleki A, Hejazi M, Mokhtarzadeh A, de la Guardia M. Recent advances on nanomaterial based electrochemical and optical aptasensors for detection of cancer biomarkers. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.12.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|