1
|
Amara U, Riaz S, Mahmood K, Akhtar N, Nasir M, Hayat A, Khalid M, Yaqub M, Nawaz MH. Copper oxide integrated perylene diimide self-assembled graphitic pencil for robust non-enzymatic dopamine detection. RSC Adv 2021; 11:25084-25095. [PMID: 35481009 PMCID: PMC9036951 DOI: 10.1039/d1ra03908c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 01/13/2023] Open
Abstract
Exploring a robust, extremely sensitive, cost-effective and reliable assay platform for the precise analysis of dopamine (DA) has become a big challenge predominantly at the clinical level. To participate in this quest, herein, we fabricated a perylene diimide (PDI) self-assembled graphitic surface of the graphitic pencil electrode (GPE) anchored copper oxide (CuO). The self-assembled N-rich PDI led to the fast movement of ions by decreasing the bandgap and improved the electron transport kinetics with more exposed catalytic active sites, thus resulting in the robust electrochemical sensing of DA. The designed sensor exhibited good sensitivity (4 μM-1 cm-2), high structural stability, repeatability and excellent reproducibility with an RSD value of 2.9%. Moreover, the developed system showed a wide linear range (5 μM to 500 μM) and reliable selectivity even in the presence of co-existing interferants, such as ascorbic acid and uric acid. The fabricated nanohybrid was eventually employed to analyze DA in spiked physiological fluids and provided satisfactory recoveries. The designed PDI-CuO based interface also showed a very low detection limit of 6 nM (S/N = 3), consequently confirming its suitability for clinical and biological applications.
Collapse
Affiliation(s)
- Umay Amara
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000 Pakistan
| | - Sara Riaz
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus 54000 Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Naeem Akhtar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000 Pakistan
| | - Muhammad Nasir
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000 Pakistan
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000 Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering and Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Yaqub
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Mian Hasnain Nawaz
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000 Pakistan
| |
Collapse
|
2
|
Perylene diimide/MXene-modified graphitic pencil electrode-based electrochemical sensor for dopamine detection. Mikrochim Acta 2021; 188:230. [PMID: 34117945 DOI: 10.1007/s00604-021-04884-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
The synthesis of novel architecture comprising perylene diimide (PDI)-MXene (Ti3C2TX)-integrated graphitic pencil electrode for electrochemical detection of dopamine (DA) is reported. The good electron passage between PDI-MXene resulted in an unprecedented nano-adduct bearing enhanced electrocatalytic activity with low-energy electronic transitions. The anionic groups of PDI corroborated enhanced active surface area for selective binding and robust oxidation of DA, thereby decreasing the applied potential. Meanwhile, the MXene layers acted as functional conducive support for PDI absorption via strong H-bonding. The considerable conductivity of MXene enhanced electron transportation thus increasing the sensitivity of sensing interface. The inclusively engineered nano-adduct resulted in robust DA oxidation with ultra-sensitivity (38.1 μAμM-1cm-2), and low detection limit (240 nM) at very low oxidation potential (-0.135 V). Moreover, it selectively signaled DA in the presence of physiological interferents with wide linearity (100-1000 μM). The developed transducing interface performed well in human serum samples with RSD (0.1 to 0.4%) and recovery (98.6 to 100.2%) corroborating the viability of the practical implementation of this integrated system. Graphical abstract Schematic illustration of the oxidative process involved on constructed sensing interface for the development of a non-enzymatic dopamine sensor.
Collapse
|
3
|
Wu J, Zhao X, Zou Y, Wu X, Bai W, Zeng X. Electrochemical determination of diethylstilbestrol in livestock and poultry meats by L-cysteine/gold nanoparticles modified electrode. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Liang R, Luo A, Zhang Z, Li Z, Han C, Wu W. Research Progress of Graphene-Based Flexible Humidity Sensor. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5601. [PMID: 33007834 PMCID: PMC7582584 DOI: 10.3390/s20195601] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023]
Abstract
Graphene is a new type of carbon material with a flexible, two-dimensional structure. Due to the excellent stability of its lattice structure and its mechanical flexibility, graphene-based materials can be applied in flexible humidity sensors. At present, the application of graphene-based flexible humidity sensors in the fields of medical care and environmental monitoring is attracting widespread attention. In this review, the basic properties of graphene oxide (GO) and reduced graphene oxide (rGO) as moisture-sensitive materials and methods for their preparation were introduced. Moreover, three methods for improving the performance of moisture-sensitive materials were discussed. The working principle of different types of graphene-based humidity sensors were introduced. The progress in the research on graphene-based flexible humidity sensors in four respects: Human respiration, skin moisture, human sweat, and environmental humidity were discussed. Finally, the future research, following the development trends and challenges, to develop the potential of integrated, graphene-based flexible humidity sensors were discussed.
Collapse
Affiliation(s)
- Rongxuan Liang
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (R.L.); (A.L.); (Z.Z.); (Z.L.); (C.H.)
- Division of Citrus Machinery, China Agriculture Research System, Guangzhou 510642, China
| | - Ansheng Luo
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (R.L.); (A.L.); (Z.Z.); (Z.L.); (C.H.)
- Division of Citrus Machinery, China Agriculture Research System, Guangzhou 510642, China
| | - Zhenbang Zhang
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (R.L.); (A.L.); (Z.Z.); (Z.L.); (C.H.)
- Division of Citrus Machinery, China Agriculture Research System, Guangzhou 510642, China
| | - Zhantong Li
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (R.L.); (A.L.); (Z.Z.); (Z.L.); (C.H.)
- Division of Citrus Machinery, China Agriculture Research System, Guangzhou 510642, China
| | - Chongyang Han
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (R.L.); (A.L.); (Z.Z.); (Z.L.); (C.H.)
- Division of Citrus Machinery, China Agriculture Research System, Guangzhou 510642, China
| | - Weibin Wu
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (R.L.); (A.L.); (Z.Z.); (Z.L.); (C.H.)
- Division of Citrus Machinery, China Agriculture Research System, Guangzhou 510642, China
| |
Collapse
|
5
|
Pang S, Kan X. One-pot synthesis of nitrogen doped graphene-thionine-gold nanoparticles composite for electrochemical sensing of diethylstilbestrol and H2O2. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Construction of effective electrochemical sensor for the determination of quinoline yellow based on different morphologies of manganese dioxide functionalized graphene. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.103280] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
He Q, Liu J, Tian Y, Wu Y, Magesa F, Deng P, Li G. Facile Preparation of Cu 2O Nanoparticles and Reduced Graphene Oxide Nanocomposite for Electrochemical Sensing of Rhodamine B. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E958. [PMID: 31262035 PMCID: PMC6669645 DOI: 10.3390/nano9070958] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/10/2019] [Accepted: 06/24/2019] [Indexed: 12/12/2022]
Abstract
In this paper, the preparation, characterization, and electrochemical application of Cu2O nanoparticles and an electrochemical reduced graphene oxide nanohybrid modified glassy carbon electrode (denoted as Cu2O NPs‒ERGO/GCE) are described. This modified electrode was used as an electrochemical sensor for the catalytic oxidation of rhodamine B (RhB), and it exhibited an excellent electrochemical performance for RhB. The oxidation potential of RhB was decreased greatly, and the sensitivity to detect RhB was improved significantly. Under optimum conditions, a linear dynamic range of 0.01-20.0 μM and a low detection limit of 0.006 μM were obtained with the Cu2O NPs‒ERGO/GCE by using second‒order derivative linear sweep voltammetry. In addition, the selectivity of the prepared modified electrode was analyzed for the determination of RhB. The practical application of this sensor was investigated for the determination of RhB in food samples, and satisfactory results were obtained.
Collapse
Affiliation(s)
- Quanguo He
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
- Key Laboratory of Functional Metal‒Organic Compounds of Hunan Province; Key Laboratory of Functional Organometallic Materials of Hunan Provincial Universities; Department of Chemistry and Material Science, Hengyang Normal University, Hengyang 421008, China
| | - Jun Liu
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Yaling Tian
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Yiyong Wu
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Felista Magesa
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha P.O.BOX 447, Tanzania
| | - Peihong Deng
- Key Laboratory of Functional Metal‒Organic Compounds of Hunan Province; Key Laboratory of Functional Organometallic Materials of Hunan Provincial Universities; Department of Chemistry and Material Science, Hengyang Normal University, Hengyang 421008, China.
| | - Guangli Li
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| |
Collapse
|
8
|
Chen K, Zhang R, Li Y, Jiang M, Wang W, Cui Z. Synthesis of Hollow Nanospherical Cuprous Oxide Supported by Nitrogen‐Doped Reduced Graphene Oxide and Its Application to Enzyme‐Free Glucose Sensing. ChemistrySelect 2019. [DOI: 10.1002/slct.201900596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kang Chen
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Yingzexi Avenue 79 # Taiyuan, Shanxi China
| | - Rong Zhang
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Yingzexi Avenue 79 # Taiyuan, Shanxi China
| | - Yuehua Li
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Yingzexi Avenue 79 # Taiyuan, Shanxi China
| | - Mengxiu Jiang
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Yingzexi Avenue 79 # Taiyuan, Shanxi China
| | - Wenyang Wang
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Yingzexi Avenue 79 # Taiyuan, Shanxi China
| | - Zixiang Cui
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Yingzexi Avenue 79 # Taiyuan, Shanxi China
| |
Collapse
|
9
|
Li Y, Cai R, Lü R, Gao L, Qin S. Template synthesis of the Cu 2O nanoparticle-doped hollow carbon nanofibres and their application as non-enzymatic glucose biosensors. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181474. [PMID: 30662752 PMCID: PMC6304140 DOI: 10.1098/rsos.181474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/25/2018] [Indexed: 06/09/2023]
Abstract
The cuprous oxide nanoparticle (Cu2O NP)-doped hollow carbon nanofibres (Cu2O/HCFs) were directly synthesized by the anodic aluminium oxide (AAO) template. The doped Cu2O NPs were formed by in situ deposition by direct reduction reaction of precursor carbonization in thermal decomposition and could act as functionalized nanoparticles. The synthesized Cu2O/HCFs were characterized in detail by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and inductively coupled plasma mass spectrometry (ICP-MS). The results reveal that Cu2O/HCFs have a tubular structure with an average diameter of approximately 60 nm. The shape of the Cu2O/HCFs is straight and Cu2O NPs are uniformly distributed and highly dispersed in HCFs. Cu2O/HCFs have good dispersibility. The electrochemical activity of Cu2O/HCFs was investigated by cyclic voltammetry (CV), the glucose sensors display high electrochemical activity towards the oxidation of glucose. Cu2O/HCFs can effectively accelerate the transmission of electrons on the electrode surface. Cu2O/HCFs are applied in the detection of glucose with a detection limit of 0.48 µM, a linear detection range from 7.99 to 33.33 µM and with a high sensitivity of 1218.3 µA cm-2 mM-1. Moreover, the experimental results demonstrate that Cu2O/HCFs have good stability, reproducibility and selectivity. Our results suggest that Cu2O/HCFs could be a promising candidate for the construction of non-enzymatic sensor.
Collapse
Affiliation(s)
| | | | - Renjiang Lü
- Author for correspondence: Renjiang Lü e-mail:
| | | | | |
Collapse
|
10
|
Foroughi F, Rahsepar M, Kim H. A highly sensitive and selective biosensor based on nitrogen-doped graphene for non-enzymatic detection of uric acid and dopamine at biological pH value. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Ye X, Yang X, Wei P, Wu K. N-methylpyrrolidone exfoliated graphene as sensitive electrochemical sensing platform for 10-Hydroxycamptothecine. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.04.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Li J, Jiang J, Xu Z, Liu M, Tang S, Yang C, Qian D. Facile synthesis of Pd−Cu@Cu2O/N-RGO hybrid and its application for electrochemical detection of tryptophan. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.12.125] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|