1
|
Woźniak J, Nawała J, Dziedzic D, Popiel S. Overview of Liquid Sample Preparation Techniques for Analysis, Using Metal-Organic Frameworks as Sorbents. Molecules 2024; 29:4752. [PMID: 39407677 PMCID: PMC11477957 DOI: 10.3390/molecules29194752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
The preparation of samples for instrumental analysis is the most essential and time-consuming stage of the entire analytical process; it also has the greatest impact on the analysis results. Concentrating the sample, changing its matrix, and removing interferents are often necessary. Techniques for preparing samples for analysis are constantly being developed and modified to meet new challenges, facilitate work, and enable the determination of analytes in the most comprehensive concentration range possible. This paper focuses on using metal-organic frameworks (MOFs) as sorbents in the most popular techniques for preparing liquid samples for analysis, based on liquid-solid extraction. An increase in interest in MOFs-type materials has been observed for about 20 years, mainly due to their sorption properties, resulting, among others, from the high specific surface area, tunable pore size, and the theoretically wide possibility of their modification. This paper presents certain advantages and disadvantages of the most popular sample preparation techniques based on liquid-solid extraction, the newest trends in the application of MOFs as sorbents in those techniques, and, most importantly, presents the reader with a summary, which a specific technique and MOF for the desired application. To make a tailor-made and well-informed choice as to the extraction technique.
Collapse
Affiliation(s)
| | | | | | - Stanisław Popiel
- Faculty of Advanced Technologies and Chemistry, Institute of Chemistry, Military University of Technology, Kaliskiego Str. 2, 00-908 Warsaw, Poland; (J.W.); (J.N.); (D.D.)
| |
Collapse
|
2
|
Bagheri AR, Aramesh N, Lee HK. Chitosan- and/or cellulose-based materials in analytical extraction processes: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
3
|
Couzon N, Dhainaut J, Campagne C, Royer S, Loiseau T, Volkringer C. Porous textile composites (PTCs) for the removal and the decomposition of chemical warfare agents (CWAs) – A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Hejabri Kandeh S, Amini S, Ebrahimzadeh H. Development of poly(vinyl alcohol)/chitosan/aloe vera gel electrospun composite nanofibers as a novel sorbent for thin-film micro-extraction of pesticides in water and food samples followed by HPLC-UV analysis. NEW J CHEM 2022. [DOI: 10.1039/d1nj05634d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Schematic presentation of applying PVA/CA/CS/AV composite nanofibers as the extraction phase in thin-film micro-extraction (TFME) of six pesticide compounds prior to HPLC-UV analysis.
Collapse
Affiliation(s)
- Saeed Hejabri Kandeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Shima Amini
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Homeira Ebrahimzadeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
5
|
Khodayari P, Jalilian N, Ebrahimzadeh H, Amini S. Trace-level monitoring of anti-cancer drug residues in wastewater and biological samples by thin-film solid-phase micro-extraction using electrospun polyfam/Co-MOF-74 composite nanofibers prior to liquid chromatography analysis. J Chromatogr A 2021; 1655:462484. [PMID: 34487879 DOI: 10.1016/j.chroma.2021.462484] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022]
Abstract
Sample preparation methods with high accuracy and matrix resistance will benefit the quick analysis of desired analytes in an intricate matrix, such as the monitoring of drug samples in biofluids. Herein, an electrospun composite, consisting of polyfam and a Co-metal organic framework- 74, was developed as a novel sorbent for the high-throughput solid-phase micro-extraction of certain anti-cancer drugs (sorafenib, dasatinib, and erlotinib hydrochloride) from wastewater and biological samples before high-performance liquid chromatography- ultraviolet analysis (HPLC-UV). The synthesis of the resulting composite nanofibers was confirmed using the techniques of Fourier transform-infrared spectroscopy, field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and powder X-ray diffraction (XRD). FESEM images illustrated irregular and bead-free nanofibers with a diameter range of 126.9-269.6 nm. Thanks to the incorporation of Co-MOF-74 into the polyfam network, the electrospun nanofibers displayed a large surface area, high porosity, and significant extraction efficiency toward target analytes. Under optimal experimental conditions, the linearity was achieved in the range of 0.1-1500.0 µg L-1 for sorafenib and 0.5-1500.0 µg L-1 for dasatinib and erlotinib hydrochloride, with a coefficient of determination of ≥0.9996. The detection limits (LODs) were calculated within the range of 0.03-0.20 µg L-1. The relative standard deviation values (RSDs %) were in the range of 3.1%-8.6% (intra-day, n = 6) and 7.0%-10.3% (inter-day, n=3) in the span of three days. Ultimately, the application of the developed method was appraised for the quantification of trace amounts of the intended analytes in various spiked samples.
Collapse
Affiliation(s)
- Parisa Khodayari
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Niloofar Jalilian
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Homeira Ebrahimzadeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran.
| | - Shima Amini
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
6
|
Sheibani E, Hosseini A, Sobhani Nasab A, Adib K, Ganjali MR, Pourmortazavi SM, Ahmadi F, Marzi Khosrowshahi E, Mirsadeghi S, Rahimi-Nasrabadi M, Ehrlich H. Application of polysaccharide biopolymers as natural adsorbent in sample preparation. Crit Rev Food Sci Nutr 2021; 63:2626-2653. [PMID: 34554043 DOI: 10.1080/10408398.2021.1978385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Preparing samples for analyses is perhaps the most important part to analyses. The varied functional groups present on the surface of biopolymers bestow them appropriate adsorption properties. Properties like biocompatibility, biodegradability, presence of different surface functional group, high porosity, considerable absorption capacity for water, the potential for modification, etc. turn biopolymers to promising candidates for varied applications. In addition, one of the most important parts of determination of an analyte in a matrix is sample preparation step and the efficiency of this step in solid phase extraction methods is largely dependent on the type of adsorbent used. Due to the unique properties of biopolymers they are considered an appropriate choice for using as sorbent in sample preparation methods that use from a solid adsorbent. Many review articles have been published on the application of diverse adsorbents in sample preparation methods, however despite the numerous advantages of biopolymers mentioned; review articles in this field are very few. Thus, in this paper we review the reports in different areas of sample preparation that use polysaccharides-based biopolymers as sorbents for extraction and determination of diverse organic and inorganic analytes.
Collapse
Affiliation(s)
| | - Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Sobhani Nasab
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Core Research Lab, Kashan University of Medical Sciences, Kashan, Iran
| | - Kourosh Adib
- Department of Chemistry, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.,Biosensor Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farhad Ahmadi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Sciences, Tehran Iran
| | | | - Somayeh Mirsadeghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Rahimi-Nasrabadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Institute of Electronic and Sensor Materials, TU Bergakademie, Freiberg, Germany
| | - Hermann Ehrlich
- Institute of Electronic and Sensor Materials, TU Bergakademie, Freiberg, Germany.,Centre for Climate Change Research, Toronto, Ontario, Canada.,A.R. Environmental Solutions, ICUBE-University of Toronto Mississauga, Mississauga, Ontario, Canada.,Center for Advanced Technology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
7
|
Zhou Y, Xu J, Lu N, Wu X, Zhang Y, Hou X. Development and application of metal-organic framework@GA based on solid-phase extraction coupling with UPLC-MS/MS for the determination of five NSAIDs in water. Talanta 2021; 225:121846. [DOI: 10.1016/j.talanta.2020.121846] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 01/01/2023]
|
8
|
Jiang Y, Li X, Piao H, Qin Z, Li J, Sun Y, Wang X, Ma P, Song D. A semi-automatic solid phase extraction system based on MIL-101(Cr) foam-filled syringe for detection of triazines in vegetable oils. J Sep Sci 2021; 44:1089-1097. [PMID: 33410576 DOI: 10.1002/jssc.202001098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/16/2022]
Abstract
In this study, several metal-organic framework-melamine foam columns were first developed and used as a laboratory-made semi-automatic solid phase extraction packed in syringe adsorber for the extraction of six triazine herbicides from vegetable oil samples coupled to high-performance liquid chromatography-tandem mass spectrometry. The metal-organic framework-foam columns were prepared using a simple approach by embedding the solid particles in melamine foam using polyvinylidene difluoride physical encapsulation. The method was applicable to a wide variety of metal-organic framework materials, and the incorporated materials retained their unique properties. Key factors that affect the extraction efficiency, including the MIL-101(Cr) amount, sample flow rate, type and volume of the eluting solvent, and flow rate of eluting solvent, were investigated. Under optimum conditions, the proposed method exhibited low limits of detection (0.017-0.096 ng/mL, S/N = 3) for six triazines. The relative standard deviations calculated for all herbicides ranged from 0.2 to 14.9%. This study demonstrated that the MIL-101(Cr)-foam column can be used as a high-quality adsorption material for the detection of triazines in vegetable oils.
Collapse
Affiliation(s)
- Yanxiao Jiang
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Xu Li
- Department of Ophthalmology, The Second Hospital, Jilin University, Changchun, P. R. China
| | - Huilan Piao
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Zucheng Qin
- Hunan Warrant Pharmaceutical Company Ltd., Changsha, P. R. China
| | - Jingkang Li
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Ying Sun
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Xinghua Wang
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Pinyi Ma
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Daqian Song
- College of Chemistry, Jilin University, Changchun, P. R. China
| |
Collapse
|
9
|
Application trends of nanofibers in analytical chemistry. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115992
expr 834212330 + 887677890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
10
|
|
11
|
Preparation of electrospun polyacrylonitrile/Ni-MOF-74 nanofibers for extraction of atenolol and captopril prior to HPLC-DAD. Mikrochim Acta 2020; 187:508. [DOI: 10.1007/s00604-020-04483-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022]
|
12
|
Mehrani Z, Ebrahimzadeh H, Moradi E. Use of aloin-based and rosin-based electrospun nanofibers as natural nanosorbents for the extraction of polycyclic aromatic hydrocarbons and phenoxyacetic acid herbicides by microextraction in packed syringe method prior to GC-FID detection. Mikrochim Acta 2020; 187:401. [PMID: 32572604 DOI: 10.1007/s00604-020-04374-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/02/2020] [Indexed: 01/08/2023]
Abstract
The synthesis of three kinds of sorbents is described. The first kind was a hydrophobic nanofiber as a specific sorbent for non-polar compounds. The second one was a hydrophilic nanofiber as a specific sorbent for polar compounds and the third one was a generic sorbent synthesized from hydrophilic and hydrophobic compounds. The functional groups were natural compounds extracted from aloin plant and gum of pine tree. The aloin/polyacrylonitrile (PAN), rosin/PAN, and aloin/rosin/PAN electrospun nanofibers were synthesized through electrospinning strategy and then characterized using field emission scanning electron microscopy and Fourier transform infrared spectroscopy. Thereafter, the synthesized sorbents were used in microextraction using the packed syringe (MEPS) method. The determination was conducted using gas chromatography with flame ionization detection (GC-FID). Under the optimum condition, the method using aloin/rosin/PAN nanofibers as a sorbent showed a good linearity in the range 1.0-250 ng mL-1 for polycyclic aromatic hydrocarbons (PAHs) (as a model for non-polar compounds) and 1.0-200 ng mL-1 for phenoxyacetic acid herbicides (CAPs) (as a model for polar compounds) with correlation coefficient (R2) higher than 0.997. Limits of detections (LODs) for PAHs and CAPs were in the range 0.1-0.3 ng mL-1 and 0.3-0.5 ng mL-1, respectively. The intra-day (n = 3) and inter-day (between 3 days) relative standard deviations (RDSs%) were in the range 6.3-12.3% for a single syringe. Finally, the MEPS-GC-FID method was applied as a simple, facile, and time and cost-effective method to analyze environmental, farm, and industrial water samples. Graphical abstract Herein, aloin/rosin/polyacrylonitrile (PAN) electrospun nanofiber was successfully synthesized and applied as a sorbent for extraction of polycyclic aromatic hydrocarbons (PAHs) as non-polar compounds and phenoxyacetic acid herbicides (CPAs) as polar compounds from aqueous solutions before GC-FID analysis.
Collapse
Affiliation(s)
- Zahra Mehrani
- Department of Chemistry and Pollutants, Shahid Beheshti University, G.C., Evin, P.O. Box 1983969411, Tehran, Iran
| | - Homeira Ebrahimzadeh
- Department of Chemistry and Pollutants, Shahid Beheshti University, G.C., Evin, P.O. Box 1983969411, Tehran, Iran.
| | - Ebrahim Moradi
- Department of Chemistry and Pollutants, Shahid Beheshti University, G.C., Evin, P.O. Box 1983969411, Tehran, Iran
| |
Collapse
|
13
|
Huang L, Huang W, Shen R, Shuai Q. Chitosan/thiol functionalized metal-organic framework composite for the simultaneous determination of lead and cadmium ions in food samples. Food Chem 2020; 330:127212. [PMID: 32526650 DOI: 10.1016/j.foodchem.2020.127212] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/03/2020] [Accepted: 05/31/2020] [Indexed: 12/30/2022]
Abstract
In this work, a facile solid phase extraction (SPE) method was developed for the analysis of trace Pb2+ and Cd2+ by using chitosan/thiol modified metal-organic frameworks (CS/MOF-SH) composite as adsorbent followed by graphite furnace atomic absorption spectrometer (GF-AAS) detection. The potential influencing factors, such as solution pH, adsorbent dosage, and extraction time, were fully estimated. Under the optimized extraction conditions, the detection limits of Pb2+ and Cd2+ were 0.033 µg L-1 and 0.008 µg L-1, respectively. Compared to other studies, CS/MOF-SH not only possessed superior adsorption performance, but also had the advantages of ease of handling and recyclability. Encouragingly, the developed method was of high accuracy and could monitor trace Pb2+ and Cd2+ in various certified reference materials (rice, wheat and tea) with complicated matrices, demonstrating its practical potential for regular monitoring of trace heavy metal ions in real food samples.
Collapse
Affiliation(s)
- Lijin Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, PR China.
| | - Wan Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, PR China.
| | - Rujia Shen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, PR China.
| | - Qin Shuai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, PR China.
| |
Collapse
|
14
|
Pacheco-Fernández I, Allgaier-Díaz DW, Mastellone G, Cagliero C, Díaz DD, Pino V. Biopolymers in sorbent-based microextraction methods. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115839] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Capture of iodide from wastewater by effective adsorptive membrane synthesized from MIL-125-NH2 and cross-linked chitosan. Carbohydr Polym 2020; 231:115742. [DOI: 10.1016/j.carbpol.2019.115742] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/27/2019] [Accepted: 12/14/2019] [Indexed: 10/25/2022]
|
16
|
Šrámková IH, Horstkotte B, Erben J, Chvojka J, Švec F, Solich P, Šatínský D. 3D-Printed Magnetic Stirring Cages for Semidispersive Extraction of Bisphenols from Water Using Polymer Micro- and Nanofibers. Anal Chem 2020; 92:3964-3971. [DOI: 10.1021/acs.analchem.9b05455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ivana H. Šrámková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, Hradec Králové 50 005, Czech Republic
| | - Burkhard Horstkotte
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, Hradec Králové 50 005, Czech Republic
| | - Jakub Erben
- Faculty of Textile Engineering, Department of Nonwovens and Nanofibrous Materials, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic
| | - Jiří Chvojka
- Faculty of Textile Engineering, Department of Nonwovens and Nanofibrous Materials, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic
| | - František Švec
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, Hradec Králové 50 005, Czech Republic
| | | | - Dalibor Šatínský
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, Hradec Králové 50 005, Czech Republic
| |
Collapse
|
17
|
Electrospun polyacrylonitrile fibers with and without magnetic nanoparticles for selective and efficient separation of glycoproteins. Mikrochim Acta 2019; 186:542. [DOI: 10.1007/s00604-019-3655-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/02/2019] [Indexed: 01/23/2023]
|
18
|
Perea-Cachero A, Romero E, Téllez C, Coronas J. Retraction: Insight into the reversible structural crystalline-state transformation from MIL-53(Al) to MIL-68(Al). CrystEngComm 2019. [DOI: 10.1039/c9ce90139f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Retraction of ‘Insight into the reversible structural crystalline-state transformation from MIL-53(Al) to MIL-68(Al)’ by Adelaida Perea-Cachero et al., CrystEngComm, 2018, 20, 402–406.
Collapse
Affiliation(s)
- Adelaida Perea-Cachero
- Chemical and Environmental Engineering Department
- Instituto de Nanociencia de Aragón (INA)
- Universidad de Zaragoza
- 50018 Zaragoza
- Spain
| | - Enrique Romero
- Chemical and Environmental Engineering Department
- Instituto de Investigación en Ingeniería de Aragón (I3A)
- Universidad de Zaragoza
- 50018 Zaragoza
- Spain
| | - Carlos Téllez
- Chemical and Environmental Engineering Department
- Instituto de Nanociencia de Aragón (INA)
- Universidad de Zaragoza
- 50018 Zaragoza
- Spain
| | - Joaquín Coronas
- Chemical and Environmental Engineering Department
- Instituto de Nanociencia de Aragón (INA)
- Universidad de Zaragoza
- 50018 Zaragoza
- Spain
| |
Collapse
|
19
|
Asadi M, Shahabuddin S, Mollahosseini A, Kaur J, Saidur R. Electrospun Magnetic Zeolite/Polyacrylonitrile Nanofibers for Extraction of PAHs from Waste Water: Optimized with Central Composite Design. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-1027-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Bagheri H, Karimi Zandian F, Javanmardi H, Abbasi A, Golzari Aqda T. Nanostructured molybdenum oxide in a 3D metal organic framework and in a 2D polyoxometalate network for extraction of chlorinated benzenes prior to their quantification by GC–MS. Mikrochim Acta 2018; 185:536. [DOI: 10.1007/s00604-018-3070-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/24/2018] [Indexed: 11/28/2022]
|
21
|
Jamshidi P, Shemirani F. Synthesis of a magnetic WO3 nanocomposite for use in highly selective preconcentration of Pb(II) prior to its quantification by FAAS. Mikrochim Acta 2018; 185:421. [DOI: 10.1007/s00604-018-2910-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/05/2018] [Indexed: 12/23/2022]
|
22
|
Preconcentration of Pb(II) by using Mg(II)-doped NiFe2O4 nanoparticles as a magnetic solid phase extraction agent. Mikrochim Acta 2018; 185:343. [DOI: 10.1007/s00604-018-2874-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/17/2018] [Indexed: 12/23/2022]
|