1
|
Yin L, Du Y, Ge M, Zhang X, Du X, Wu X. Rod-Shaped NanoZnTPyP Paper-Based Sensor for Visual Detection of Dopamine in Human Plasma. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2025; 2025:9981628. [PMID: 40260265 PMCID: PMC12011473 DOI: 10.1155/jamc/9981628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 03/20/2025] [Indexed: 04/23/2025]
Abstract
Dopamine (DA) is a catecholamine neurotransmitter secreted by the human adrenal medulla and is related to many medical diseases. The rapid and sensitive detection of DA levels in physiological media is attracting attention. This paper has developed a fluorescence paper-based sensor using CdTe quantum dots (QDs)-rod nanozinc 5, 10, 15, 20-tetra (4-pyridyl)-21H-23H-porphine (nanoZnTPyP) for sensitive and visual detection of DA. After adding DA, the original quenching fluorescence of the CdTe QDs-rod nanoZnTPyP sensor was effectively restored. The detection mechanism may be that the oxidation of DA to the alkaline CdTe QDs-rod nanoZnTPyP solution produced DA-quinine, and the recovery of fluorescence was caused by the electronic effect of DA-quinine and rod-shaped nanoZnTPyP. The detection range is 0.5∼10 nmol/L, and the limit of detection (LOD) is 0.38 nmol/L (S/N = 3). The sensor system was used on paper device to detect significant changes in the fluorescent color of DA at different concentrations. In addition, this method has been successfully used for the determination of DA in human plasma. The sensor system is simple, easy to operate, and has high selectivity for possible DA interfering substances, which provided new ideas for detecting DA and Parkinson's disease, Alzheimer's disease, and other DA-related diseases.
Collapse
Affiliation(s)
- Linlin Yin
- Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Yuyu Du
- Jiaxing Jiayuan Testing Technology Service Co., Ltd, Jiaxing, China
| | - Miaohua Ge
- Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Xiang Zhang
- Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Xinyi Du
- Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Xiaoqiong Wu
- Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| |
Collapse
|
2
|
Yu HP, Xu QQ, Wang X, Cui YY, Wang HF, Yang CX. Fabrication of fluorinated magnetic microporous organic network for selective and efficient extraction of benzoylurea insecticides in tea beverages. Food Chem 2024; 460:140529. [PMID: 39047468 DOI: 10.1016/j.foodchem.2024.140529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
In this work, a novel fluorinated magnetic microporous organic network (Fe3O4@FMON) was exquisitely designed and synthesized for highly efficient and selective magnetic solid phase extraction (MSPE) of fluorinated benzoylurea insecticides (BUs) from complex tea beverage samples. The Fe3O4@FMON exhibited good extraction for BUs via the pre-designed hydrophobic, π-π stacking, hydrogen bonding and specific FF interactions. A sensitive Fe3O4@FMON-based MSPE-HPLC-UV method with wide linear range (0.10-1000 μg L-1, R2 ≥ 0.996), low limits of detection (0.01-0.02 μg L-1), and large enrichment factors (85.6-98.0) for BUs from tea beverage samples was developed. By decorating F elements within MON's networks, the Fe3O4@FMON characterized good hydrophobicity and chemical stability, which could be reused at least 8 times without decrease of recoveries. This work demonstrated the great prospects of Fe3O4@FMON for enriching trace BUs from complex substrates and triggered the potential of FMON for sample pretreatment of fluorinated analytes.
Collapse
Affiliation(s)
- Hui-Ping Yu
- College of Chemistry, Research Center for Analytical Sciences, Nankai University, Tianjin 300071, China
| | - Qian-Qian Xu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xin Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yuan-Yuan Cui
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - He-Fang Wang
- College of Chemistry, Research Center for Analytical Sciences, Nankai University, Tianjin 300071, China.
| | - Cheng-Xiong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
3
|
Gkika DA, Ladomenou K, Bououdina M, Mitropoulos AC, Kyzas GZ. Adsorption and photocatalytic applications of porphyrin-based materials for environmental separation processes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168293. [PMID: 37926255 DOI: 10.1016/j.scitotenv.2023.168293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
As society progresses and industrializes, the issue of water pollution, caused by a wide array of organic and inorganic pollutants, poses significant risks to both human well-being and the environment. Given its distinctive characteristics, water pollution has become a paramount concern for society, necessitating immediate attention. Numerous studies have been conducted on wastewater treatment, primarily focusing on two key approaches: adsorption and photocatalytic degradation. Adsorption offers unparalleled advantages, including its simplicity, high removal efficiency, and cost-effectiveness. Conversely, photocatalysis harnesses abundant, clean, and non-polluting sunlight, addressing the critical issue of energy scarcity. Porphyrins, which are macrocyclic tetrapyrrole derivatives found widely in nature, have attracted growing interest in recent years. These lipophilic pigments exhibit remarkable chemical stability and have retained their major structural features for up to 1.1 billion years. As such, they are considered vital indicators of life and have been extensively studied, from the remnants of extinct organisms to gain insights into the principles of evolution. Porphyrins are often associated with a central metal ion within their ring system and can be modified through various substituents, including additional rings or ring opening, resulting in a wide range of functionalities. This comprehensive review summarizes recent advancements in the field of porphyrins. It begins by introducing the structures and preparation methods of porphyrins. Subsequently, it delves into notable applications of porphyrins in the context of pollutant adsorption in water and their environmentally friendly photocatalytic degradation.
Collapse
Affiliation(s)
- Despina A Gkika
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, 654 04 Kavala, Greece
| | - Kalliopi Ladomenou
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, 654 04 Kavala, Greece
| | - Mohamed Bououdina
- Department of Mathematics and Science, Faculty of Humanities and Sciences, Prince Sultan University, Riyadh, Saudi Arabia
| | - Athanasios C Mitropoulos
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, 654 04 Kavala, Greece
| | - George Z Kyzas
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, 654 04 Kavala, Greece.
| |
Collapse
|
4
|
Wang J, Liu J, Liu W, Guo Y, Wu Q, Wang Z, Yan H. Porphyrin-based hypercrosslinked polymers as sorbents for efficient extraction of nitroimidazoles from water, honey and chicken breast. J Chromatogr A 2023; 1702:464087. [PMID: 37230054 DOI: 10.1016/j.chroma.2023.464087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
In this work, a series of 5,10,15,20-tetraphenylporphyrin (TPP)-based hyper crosslinked polymers were prepared by Friedel-Crafts reaction. Among them, the HCP-TPP-BCMBP, which was prepared by using TPP as the monomer and with 4,4'-Bis(chloromethyl)-1,1'-biphenyl (BCMBP) as the cross-linking agent, had the best adsorption capability for the enrichment of the nitroimidazoles of dimetridazole, ronidazole, secnidazole, metronidazole, and ornidazole. Then, a solid-phase extraction (SPE) method with the HCP-TPP-BCMBP as adsorbent coupled with HPLC-UV detection for the determination of nitroimidazole residues in honey, environmental water, and chicken breast samples was established. The influence of the main factors that affect the SPE, i.e., sample solution volume, sample loading rate, sample pH, and eluent and its volume, were studied. Under the optimal conditions, the limits of detection (S/N = 3) for the nitroimidazoles were measured to be in the range of 0.02-0.04 ng mL-1, 0.4-1.0 ng g-1 and 0.5-0.7 ng g-1 for environmental water, honey, and chicken breast samples, with the determination coefficients being in the range of 0.9933-0.9998. The analytes recoveries by the method in fortified samples fell in the range from 91.1% to 102.7% for environmental water, from 83.2% to 105.0% for honey, and from 85.9% to 103.0% for chicken breast samples, and the relative standard deviations for the determination were less than 10%. It shows that the HCP-TPP-BCMBP has a strong adsorption capability for some polar compounds.
Collapse
Affiliation(s)
- Juntao Wang
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Jiajia Liu
- China Petroleum Engineering & Construction Corp. North China Company, Renqiu 062550, Hebei, China
| | - Weihua Liu
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Yaxing Guo
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qiuhua Wu
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Hongyuan Yan
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
5
|
Wang S, Chen X, Bao L, Liu K, Bi Y, Xue Y, Liu X, Gu Q, Zhang Y. A Magnetic Fe
3
O
4
/Modified Bentonite Composite as Recyclable Heterogeneous Catalyst for Synthesizing 2‐Substituted Benzimidazoles. ChemistrySelect 2023. [DOI: 10.1002/slct.202204930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Shuang Wang
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Xiaodong Chen
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Lijian Bao
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Kejun Liu
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Yongchang Bi
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Yafei Xue
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Xiaowen Liu
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Qiang Gu
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Yumin Zhang
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
6
|
Chen J, Han X, Fu G, Tang W, Row KH, Qiu H. Preparation of magnetic nitrogen-doped porous carbon by incomplete combustion with solvothermal synthesis for magnetic solid-phase extraction of benzoylurea insecticides from environmental water. J Chromatogr A 2022; 1685:463600. [DOI: 10.1016/j.chroma.2022.463600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
|
7
|
Zang L, Ren Y, He M, Chen B, Hu B. Fluorine-Functionalized Covalent-Organic-Framework-Coated Stir Bar for the Extraction of Benzoylurea Insecticides in Pear Juice and Beverage Followed by High-Performance Liquid Chromatography-Ultraviolet Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12689-12699. [PMID: 36149086 DOI: 10.1021/acs.jafc.2c03983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A fluorinated covalent organic framework (COF), named F-COF, was fabricated via simple room-temperature synthesis. With the characteristics of rich fluorine atoms, hydrophobicity, and large conjugated structure, F-COF was evaluated for the extraction of five benzoylurea insecticides (BUs) containing fluorine atoms, benzene ring, and urea bridge. Specifically, F-COF-coated stir bars were prepared by physical adhesion and exhibited higher extraction recovery (73-93 versus 40-85%) toward BUs than commercial stir bars in a shorter extraction time (50 min versus 24 h). The adsorption behavior of BUs on F-COF was explored, and it was assumed that the halogen bond (O-F), hydrophobic interaction, electrostatic interaction, and π-π stacking contributed to the adsorption. On the basis of it, a method combining stir bar sorptive extraction with liquid chromatography-ultraviolet detector was developed for trace analysis of five BUs. Under the optimal conditions, the limits of detection for BUs were found to be 0.301-0.672 μg/L, with the linear range of 1.0/2.0-500 μg/L and relative standard deviations of <8.0% (c = 5 μg/L and n = 7). The accuracy of the proposed method was validated by the recovery test, and the recoveries of target BUs in spiked pear juice and pear beverage were 82.0-113 and 84.0-112%, respectively.
Collapse
Affiliation(s)
- Lijuan Zang
- Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Yutao Ren
- Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| |
Collapse
|
8
|
Highly magnetically responsive porous nanoparticles based on tris(β-keto-hydrazo)-cyclohexane subunit: Fast removal of dyes from water with convenient recyclability. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Yang L, Zhou Y, Chen L, Chen H, Liu W, Zheng W, Andersen ME, Zhang Y, Hu Y, Crabbe MJC, Qu W. Single enrichment systems possibly underestimate both exposures and biological effects of organic pollutants from drinking water. CHEMOSPHERE 2022; 292:133496. [PMID: 34990717 DOI: 10.1016/j.chemosphere.2021.133496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Comprehensive enrichment of contaminants in drinking water is an essential step for accurately determining exposure levels of contaminants and testing their biological effects. Traditional methods using a single absorbent for enriching contaminants in water might not be adequate for complicated matrices with different physical-chemical profiles. To examine this hypothesis, we used an integrated enrichment system that had three sequential stages-XAD-2 resin, poly (styrene-divinylbenzene) and activated charcoal to capture organic pollutants and disinfection by-products (DBPs) from drinking water in Shanghai. Un-adsorbed Organic Compounds in Eluates (UOCEs) named UOCEs-A, -B, and-C following each adsorption stage were determined by gas chromatography-mass spectrometry to evaluate adsorption efficiency of the enrichment system. Meanwhile, biological effects such as cytotoxicity, effects on reactive oxygen species (ROS) generation and glutathione (GSH) depletion were determined in human LO2 cells to identify potential adverse effects on exposure to low dose contaminants. We found that poly-styrene-divinylbenzene (PS-DVB) and activated charcoal (AC) could still partly collect UOCEs-A and-B that the upper adsorption column incompletely captured, and that potential carcinogens like 2-naphthamine were present in all eluates. UOCEs-A at (1-4000), UOCEs-B at (1000-4000), and UOCEs-C at (2400-4000) folds of the actual concentrations had significant cytotoxicity to LO2 cells. Additionally, ROS and GSH change in cells treated with UOCEs indicated the potential for long-term effects of exposure to some mixtures of contaminants such as DBPs at low doses. These results suggested that an enriching system with a single adsorbent would underestimate the exposure level of pollutants and the biological effects of organic pollutants from drinking water. Effective methods for pollutants' enrichment and capture of drinking water should be given priority in future studies on accurate evaluation of biological effects exposed to mixed pollutants via drinking water.
Collapse
Affiliation(s)
- Lan Yang
- Center for Water and Health, Key Lab of Health Technology Assessment, National Health Commission, Key Laboratory of Public Health and Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, P.O. Box 249, Yi Xue Yuan Road 138, Shanghai, 200032, China
| | - Ying Zhou
- Center for Water and Health, Key Lab of Health Technology Assessment, National Health Commission, Key Laboratory of Public Health and Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, P.O. Box 249, Yi Xue Yuan Road 138, Shanghai, 200032, China; Key Laboratory of Public Health and Safety, Ministry of Education, Department of Hygienic Chemistry, School of Public Health, Fudan University, P.O. Box 122, Yi Xue Yuan Road 138, Shanghai, 200032, China
| | - Li Chen
- Center for Water and Health, Key Lab of Health Technology Assessment, National Health Commission, Key Laboratory of Public Health and Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, P.O. Box 249, Yi Xue Yuan Road 138, Shanghai, 200032, China
| | - Hanyi Chen
- Center for Water and Health, Key Lab of Health Technology Assessment, National Health Commission, Key Laboratory of Public Health and Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, P.O. Box 249, Yi Xue Yuan Road 138, Shanghai, 200032, China
| | - Wenhao Liu
- Center for Water and Health, Key Lab of Health Technology Assessment, National Health Commission, Key Laboratory of Public Health and Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, P.O. Box 249, Yi Xue Yuan Road 138, Shanghai, 200032, China
| | - Weiwei Zheng
- Center for Water and Health, Key Lab of Health Technology Assessment, National Health Commission, Key Laboratory of Public Health and Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, P.O. Box 249, Yi Xue Yuan Road 138, Shanghai, 200032, China
| | - Melvin E Andersen
- Andersen ToxConsulting LLC, 4242 Granite Lake Court Denver, North Carolina, 28037, USA
| | - Yubing Zhang
- Department of Toxicology, School of Public Health, Fudan University, Yi Xue Yuan Road 138, Shanghai, 200032, China
| | - Yi Hu
- Center for Water and Health, Key Lab of Health Technology Assessment, National Health Commission, Key Laboratory of Public Health and Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, P.O. Box 249, Yi Xue Yuan Road 138, Shanghai, 200032, China
| | - M James C Crabbe
- Wolfson College, Oxford University, Oxford, OX2 6UD, United Kingdom; Institute of Biomedical and Environmental Science & Technology, University of Bedfordshire, Luton, LU1 3JU, UK
| | - Weidong Qu
- Center for Water and Health, Key Lab of Health Technology Assessment, National Health Commission, Key Laboratory of Public Health and Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, P.O. Box 249, Yi Xue Yuan Road 138, Shanghai, 200032, China.
| |
Collapse
|
10
|
An Y, Wang J, Jiang S, Li M, Li S, Wang Q, Hao L, Wang C, Wang Z, Zhou J, Wu Q. Synthesis of natural proanthocyanidin based novel magnetic nanoporous organic polymer as advanced sorbent for neonicotinoid insecticides. Food Chem 2022; 373:131572. [PMID: 34810015 DOI: 10.1016/j.foodchem.2021.131572] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/29/2021] [Accepted: 11/07/2021] [Indexed: 01/14/2023]
Abstract
In this work, a natural proanthocyanidin (PA) based magnetic nanoporous organic polymer (named as PA-MOP) was successfully synthesized for the first time. The PA-MOP possessed high hydrophilic-surface, good magnetic responsiveness and high affinity for neonicotinoid insecticides. It was applied as an advanced magnetic sorbent for extraction of four neonicotinoids (thiamethoxam, imidacloprid, acetamiprid and thiacloprid) from environmental water, peach juice and honey samples prior to HPLC analysis. Under optimal conditions, the limits of detection for the analytes at S/N = 3 were 0.02-0.08 ng mL-1 for water, 0.03-0.10 ng mL-1 for peach juice and 0.05-0.16 ng g-1 for honey sample. The method recoveries were 80.0%-114.8%, with the relative standard deviations below 6.8%. The values of matrix effect were from -1.5% to -9.3%. Based on theory calculation, the extraction mechanism can be attributed to multiple interactions between the PA-MOP and the neonicotinoids, in which hydrogen bonding, π-π stacking and electrostatic interactions are the major interactions.
Collapse
Affiliation(s)
- Yangjuan An
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Junmin Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Sichang Jiang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Min Li
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Shuofeng Li
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Lin Hao
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Junhong Zhou
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
11
|
Preparation of a biomimetic Cu(II) protoporphyrin magnetic nanocomposite and its application for the selective adsorption of angiotensin I. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Zang L, He M, Wu Z, Chen B, Hu B. Imine-linked covalent organic frameworks coated stir bar sorptive extraction of non-steroidal anti-inflammatory drugs from environmental water followed by high performance liquid chromatography-ultraviolet detection. J Chromatogr A 2021; 1659:462647. [PMID: 34731758 DOI: 10.1016/j.chroma.2021.462647] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 11/30/2022]
Abstract
In this study, spherical imine-linked covalent organic frameworks (COFs) were fabricated from 2,5-dimethoxybenzene-1,4-dialdehyde (DMTP) and 1,3,5-tris (4-aminophenyl) benzene (TAPB) and named as TAPB-DMTP-COFs. The resulting powders were coated onto bare glass bars via physical-adhesion to obtain TAPB-DMTP-COFs coated stir bars. The self-made stir bars exhibited higher extraction efficiency (74-85%) and faster dynamics (50 min) towards non-steroidal anti-inflammatory drugs (NSAIDs) over ethylene glycol-Silicone (42-68%, 180 min) and polydimethylsiloxane (3-61%, 180 min) coated stir bars. Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectroscopy (XPS), zeta potential and water contact angle were employed to provide a comprehensive understanding of the adsorption mechanism between the coating and analytes. The results displayed that methoxy group worked as an adsorption site helping the adsorption of interest NSAIDs onto the TAPB-DMTP-COFs coating and hydrogen bonds formed between the O atoms and the analytes. Additionally, the adsorption mechanisms possibly also involved π-π interaction and hydrophobic interaction. Moreover, TAPB-DMTP-COFs coated stir bars exhibited good stability and could be reused more than 60 times. Subsequently, a method by combining TAPB-DMTP-COFs coated stir bar sorptive extraction (SBSE) with liquid chromatography (HPLC)-ultraviolet detector (UV) was established for the determination of four NSAIDs in environmental waters. Under the optimized conditions, the established method showed a wide linear range of 0.2/1-500 μg/L for interest NSAIDs, the limits of detection varied from 0.039 to 0.312 μg/L. Yangtze River water, East Lake water and Spring water were subjected to the proposed method, the recoveries in spiked samples were 84.7-104%, 81.2-101% and 82.6-97.6%, respectively.
Collapse
Affiliation(s)
- Lijuan Zang
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Zhekuan Wu
- Tobacco Research Institute of Hubei Province, Wuhan 430040, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
13
|
An overview of graphene-based nanoadsorbent materials for environmental contaminants detection. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116255] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
Xu M, Guo L, Wang Y, Wang Q, Hao L, Wang C, Wu Q, Wang Z. Heterocyclic frameworks as efficient sorbents for solid phase extraction-high performance liquid chromatography analysis of nitroimidazoles in chicken meat. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Fathalla M. Synthesis, CO2 Adsorption and Catalytic Properties of Porphyrin-Pyromellitic Dianhydride Based Porous Polymers. Macromol Res 2021. [DOI: 10.1007/s13233-021-9037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Xin J, Zhou Y, Wang X, Xu G, Xie M, Liu L, Zhao R, Wu Y, Wang M. Room-temperature synthesis of magnetic covalent organic frameworks for analyzing trace benzoylurea insecticide residue in tea beverages. Food Chem 2021; 347:129075. [PMID: 33493838 DOI: 10.1016/j.foodchem.2021.129075] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/03/2020] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
A novel magnetic covalent organic framework (NH2-Fe3O4@COF) was prepared using a simple room-temperature synthesis in this study. These magnetic particles exhibited high adsorption performance with short adsorption time (10 min) for six benzoylurea insecticides (BUs) as magnetic solid-phase extraction (MSPE) adsorbents. Quantum chemistry calculation demonstrated that adsorption mechanism was primarily attributed to strong halogen bonds between electronegative O atoms of COF and electropositive F atoms of BUs as well as potential hydrophobic effect. Wide linearities (10-1000 ng·L-1) and low limits of detection (0.06-1.65 ng·L-1) for six analytes were obtained via liquid chromatography-tandem mass spectrometry. Applicability of the proposed method was further evaluated by analyzing four kinds of original tea beverages. Recoveries of six BUs in spiked samples ranged from 80.1% to 108.4%.
Collapse
Affiliation(s)
- Junhong Xin
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yiran Zhou
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Xia Wang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China.
| | - Guiju Xu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China
| | - Meng Xie
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China
| | - Lu Liu
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Rusong Zhao
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China; School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yongning Wu
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Centre for Food Safety Risk Assessment, Beijing 100021, China
| | - Minglin Wang
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
17
|
Niu M, Li Z, Zhang S, He W, Li J, Lu R, Gao H, Zeng A, Zhou W. Hybridization of Metal-Organic Frameworks with attapulgite for magnetic solid phase extraction and determination of benzoylurea insecticides in environmental water samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Santaladchaiyakit Y, Srijaranai S. Dissolvable Mg/Al layered double hydroxides and surfactant as an extractant for trace analysis of benzoylurea insecticides by high performance liquid chromatography. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5380-5391. [PMID: 33111727 DOI: 10.1039/d0ay01346c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A rapid and simple preconcentration method using dissolvable Mg/Al layered-double hydroxides (LDHs) and high performance liquid chromatography-photodiode array detection (HPLC-PDA) was developed for the analysis of benzoylurea insecticides (BUs) in water and honey samples. The proposed dissolvable LDHs for the extraction can be prepared in one step by the sequential addition of sodium hydroxide, magnesium chloride, aluminium chloride, and sodium dodecyl sulfate into the sample solution containing the target BUs. The co-precipitate phase was simply obtained after centrifugation, and the phase was then dissolved with formic acid before analysis by HPLC. The developed method provided an enrichment factor of 12.5-23.7. LODs were obtained in the range of 0.1-0.3 μg L-1 for deionized water, 0.2-2.0 μg L-1 for environmental waters, and 0.5-2.0 μg L-1 for the analyzed honey samples. Good recoveries ranging from 78.4 to 117.8% and 72.7 to 117.9% for water and honey samples, respectively, were obtained.
Collapse
Affiliation(s)
- Yanawath Santaladchaiyakit
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand.
| | | |
Collapse
|
19
|
Advances in magnetic porous organic frameworks for analysis and adsorption applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Jin L, Lv S, Miao Y, Liu D, Song F. Recent Development of Porous Porphyrin‐based Nanomaterials for Photocatalysis. ChemCatChem 2020. [DOI: 10.1002/cctc.202001179] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Lin Jin
- Institute of Molecular Science and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao Shandong 266237 P. R. China
| | - Shibo Lv
- Institute of Molecular Science and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao Shandong 266237 P. R. China
| | - Yuyang Miao
- Institute of Molecular Science and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao Shandong 266237 P. R. China
| | - Dapeng Liu
- Institute of Molecular Science and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao Shandong 266237 P. R. China
| | - Fengling Song
- Institute of Molecular Science and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao Shandong 266237 P. R. China
| |
Collapse
|
21
|
Selahle SK, Waleng NJ, Mpupa A, Nomngongo PN. Magnetic Solid Phase Extraction Based on Nanostructured Magnetic Porous Porphyrin Organic Polymer for Simultaneous Extraction and Preconcentration of Neonicotinoid Insecticides From Surface Water. Front Chem 2020; 8:555847. [PMID: 33195047 PMCID: PMC7525214 DOI: 10.3389/fchem.2020.555847] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/17/2020] [Indexed: 12/07/2022] Open
Abstract
In this study, a magnetic porphyrin-based porous organic polymer (MP-POP) nanocomposite was successfully synthesized according previous studies and applied as an adsorbent for simultaneous extraction and preconcentration of four neonicotinoid insecticides from surface river water. The MP-POP was characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDS), N2-adsorption/desorption analysis, Fourier Transform infrared spectroscopy (FTIR). The neonicotinoid insecticides were quantified using high performance chromatography coupled with diode array detector (HPLC-DAD). The MP-POP shown to have a high surface area, highly porous structure and strong affinity toward the investigated analytes. The adsorption capacities were 99.0, 85.5, 90.0, and 79.4 mg g-1 for acetamiprid, clothiandin, thiacloprid and imidacloprid, respectively. The influential parameters affecting the magmatic μ-solid phase extraction (M-μ-SPE) procedure were investigated using fractional factorial design and surface response methodology (RSM). Under optimum conditions, the method exhibited relatively low limit of detection in the range of 1.3-3.2 ng L-1, limit of quantification in the range of 4.3-11 ng L-1 and wide linearity (up to 600 μg L-1). The intraday and interday precision, expressed as the relative standard deviation (RSD) were <5%. The percentage recoveries for the four target analytes ranged from 91 to 99.3% for the spiked river water samples. The method was applied for determination of neonicotinoids in river water samples and concentrations ranged from 0 to 190 ng L-1.
Collapse
Affiliation(s)
- Shirley K. Selahle
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Doornfontein, South Africa
- Department of Science and Innovation/National Research Foundation South African Research Chairs Initiative Chair: Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa
| | - Ngwako J. Waleng
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Doornfontein, South Africa
- Department of Science and Innovation/National Research Foundation South African Research Chairs Initiative Chair: Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa
| | - Anele Mpupa
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Doornfontein, South Africa
- Department of Science and Innovation/National Research Foundation South African Research Chairs Initiative Chair: Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa
| | - Philiswa N. Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Doornfontein, South Africa
- Department of Science and Innovation/National Research Foundation South African Research Chairs Initiative Chair: Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
22
|
Duo H, Lu X, Nie X, Wang L, Wang S, Liang X, Guo Y. Metal-organic frameworks derived magnetic porous carbon for magnetic solid phase extraction of benzoylurea insecticides from tea sample by Box-Behnken statistical design. J Chromatogr A 2020; 1626:461328. [DOI: 10.1016/j.chroma.2020.461328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 12/21/2022]
|
23
|
Newly designed molecularly imprinted 3-aminophenol-glyoxal-urea resin as hydrophilic solid-phase extraction sorbent for specific simultaneous determination of three plant growth regulators in green bell peppers. Food Chem 2020; 311:125999. [DOI: 10.1016/j.foodchem.2019.125999] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/15/2019] [Accepted: 12/01/2019] [Indexed: 02/07/2023]
|
24
|
Jia Y, Wang Y, Yan M, Wang Q, Xu H, Wang X, Zhou H, Hao Y, Wang M. Fabrication of iron oxide@MOF-808 as a sorbent for magnetic solid phase extraction of benzoylurea insecticides in tea beverages and juice samples. J Chromatogr A 2020; 1615:460766. [DOI: 10.1016/j.chroma.2019.460766] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/03/2019] [Indexed: 11/29/2022]
|
25
|
Magnetic 3D hierarchical Ni/NiO@C nanorods derived from metal-organic frameworks for extraction of benzoylurea insecticides prior to HPLC-UV analysis. Mikrochim Acta 2020; 187:88. [DOI: 10.1007/s00604-019-4013-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/08/2019] [Indexed: 12/21/2022]
|
26
|
Zhang H, Jieying W, Zhengji L, Fan R, Chen Q, Shan X, Jiang C, Sun G. Extraction of phenylurea herbicides from rice and environmental water utilizing MIL-100(Fe)-functionalized magnetic adsorbents. NEW J CHEM 2020. [DOI: 10.1039/c9nj05553c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, a novel method is reported for the extraction and enrichment of phenylurea herbicides (PUHs) from rice and environmental water samples using MIL-100(Fe)-functionalized magnetic nanoparticles as adsorbents.
Collapse
Affiliation(s)
- Hongyuan Zhang
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Wang Jieying
- Central Research Institute
- Shanghai Pharmaceuticals Holding Co. Ltd
- Shanghai
- China
| | - Liang Zhengji
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Rong Fan
- Huizhou Power Supply Bureau of Guangdong Power Grid Corporation
- Huizhou
- China
| | - Qian Chen
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Xueru Shan
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Chunzhu Jiang
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Guoying Sun
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| |
Collapse
|
27
|
A composite consisting of a deep eutectic solvent and dispersed magnetic metal-organic framework (type UiO-66-NH 2) for solid-phase extraction of RNA. Mikrochim Acta 2019; 187:58. [PMID: 31848727 DOI: 10.1007/s00604-019-4040-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
Abstract
A cactus-shaped magnetic composite was prepared for solid-phase extraction of RNA. It is composed of the metal organic framework UiO-66-NH2 that was modified with Fe3O4 nanoparticles. The composite was then dispersed in a lactic acid-based deep eutectic solvent (DES, Fe3O4-COOH@UiO-66-NH2@DES). The structures of the sorbents were characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectrometry, vibrating sample magnetometry and thermogravimetric analysis. The extraction performance of sorbents was optimized and the maximum extraction capacity reached 246 mg·g-1. Extraction is shown to mainly rely on chelation interaction, electrostatic interaction, hydrophobic interaction and hydrogen bonding interaction. The sorbent can selectively extract RNA over DNA, bovine hemoglobin and amino acids. Regeneration studies indicated that the sorbent can be re-used (after regenreation with DES) several times without obvious change of the extraction capacity. The successful extraction of RNA from yeast testified the practical application of the sorbent. Graphical abstractSchematic representation of the fabrication Fe3O4-COOH@UiO-66-NH2@DES, and its application in the magnetic solid phase extraction of RNA.
Collapse
|
28
|
Jiang HL, Li N, Cui L, Wang X, Zhao RS. Recent application of magnetic solid phase extraction for food safety analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115632] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
29
|
Li WK, Shi YP. Recent advances and applications of carbon nanotubes based composites in magnetic solid-phase extraction. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Huang X, Qiao K, Li L, Liu G, Xu X, Lu R, Gao H, Xu D. Preparation of a magnetic graphene/polydopamine nanocomposite for magnetic dispersive solid-phase extraction of benzoylurea insecticides in environmental water samples. Sci Rep 2019; 9:8919. [PMID: 31222032 PMCID: PMC6586854 DOI: 10.1038/s41598-019-45186-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
A magnetic graphene/polydopamine (MG/PDA) nanocomposite has been prepared and used as sorbent for magnetic dispersive solid-phase extraction (MDSPE) of four benzoylurea insecticides in environmental water samples. The obtained nanocomposites were characterized by transmission electron microscopy, scanning electron microscopy, vibrating sample magnetometry, powder X-ray diffraction, fourier transform infrared spectroscopy, surface area and porosity analysis and thermogravimetric analysis. To investigate the adsorption performance of MG/PDA for target analytes, various parameters affecting the MG/PDA-based MDSPE procedure were optimized. Under the optimal conditions, the established method exhibits good linearity (R2 ≥ 0.9988) in the concentration range 2.5-500 µg L-1. A low limit of detection (0.75 µg L-1, signal/noise = 3:1), a low limit of quantification (2.50 µg L-1, signal/noise = 10:1), and good precision (intraday relative standard deviation ≤3.6%, interday relative standard deviation ≤4.5%) are also achieved. Finally, the simple, fast, and sensitive sample preparation technique was successfully used to determine benzoylurea insecticides in environmental water samples.
Collapse
Affiliation(s)
- Xiaodong Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Kexin Qiao
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Lingyun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
| | - Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
| | - Xiaomin Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
| | - Runhua Lu
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Haixiang Gao
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China.
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China.
| |
Collapse
|
31
|
Peng Y, Huang M, Hu Y, Li G, Xia L. Microwave-assisted synthesis of porphyrin conjugated microporous polymers for microextraction of volatile organic acids in tobaccos. J Chromatogr A 2019; 1594:45-53. [PMID: 30799063 DOI: 10.1016/j.chroma.2019.02.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/10/2019] [Accepted: 02/16/2019] [Indexed: 02/08/2023]
Abstract
Conjugated microporous polymers (CMPs) with permanent microporosity and extended p-conjugated skeletons have recently shown the fascinating application in separation and enrichment. In this report, porphyrin CMP that possessed microporous structure and nitrogen-rich pyrrole building blocks was successfully synthesized by microwave-assisted method. Then, a novel coating based on porphyrin CMP was fabricated on silica fiber for efficient enrichment volatile organic acids (VOAs). The simulation showed the coating exhibited strong interaction with volatile organic acids based on charge transfer interaction, hydrogen bond and size effect. Hence, we proposed a method for determination of volatile organic acids in tobaccos by headspace solid-phase microextraction (HS-SPME) with porphyrin CMP coating by gas chromatography-mass spectrometry. The results showed that the coating provided high enrichment factors for VOAs ranging from 66,657 to 133,970 and low limits of detection from 4.6 to 22 ng/L. A good linearity was observed for propionic acid and crotonic acid ranging from 0.050 to 8.0 μg/L, 2-methylheptanoic acid ranging from 0.063 to 1.5 μg/L, others ranging from 0.025 to 3.0 μg/L with the determination coefficient (R2) between 0.9900 and 0.9980. The strategy for determination of volatile compounds in complex solid samples was successfully applied to the analysis of volatile organic acids in tobacco leaves. The results showed that the method was accurate and reliable.
Collapse
Affiliation(s)
- Yi Peng
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Manyan Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
32
|
Magnetic nanoparticles modified with hyperbranched polyamidoamine for the extraction of benzoylurea insecticides prior to their quantitation by HPLC. Mikrochim Acta 2019; 186:351. [DOI: 10.1007/s00604-019-3450-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/15/2019] [Indexed: 11/27/2022]
|
33
|
Liang R, Peng Y, Hu Y, Li G. A hybrid triazine-imine core-shell magnetic covalent organic polymer for analysis of pesticides in fruit samples by ultra high performance liquid chromatography with tandem mass spectrometry. J Sep Sci 2019; 42:1432-1439. [PMID: 30680889 DOI: 10.1002/jssc.201801299] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 02/03/2023]
Abstract
A novel hybrid triazine-imine core-shell magnetic covalent organic polymer with high adsorption capacity and excellent stability was fabricated by surface-assisted in situ growth technique. The composite possesses porous and extended π-conjugated system, and was applied as the magnetic sorbent for efficient enrichment and rapid separation of pesticides. A new analytical method for simultaneous determination of eight pesticides in fruit samples was developed by magnetic solid phase extraction combined with ultra high performance liquid chromatography and tandem mass spectrometry. The effect of extraction time, desorption time, and the type of desorption solvent on the extraction efficiency were evaluated. The established method shows good repeatability and high sensitivity. The repeatability of this method was estimated with relative standard deviations in the range of 0.7-7.0% (n = 5) for the same batch, and 1.7-10% (n = 3) for batch to batch. Good linearity for eight pesticides was obtained with coefficient of determination in the range of 0.9942-0.9990. Limit of detections ranged from 0.4 to 1.2 ng/L. Real sample determination showed that four and two pesticides were detected in strawberry and grape, respectively. The results demonstrated that the established method was efficient, sensitive, and convenient for trace determination of pesticides in fruit samples.
Collapse
Affiliation(s)
- Ruiyu Liang
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yi Peng
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
34
|
Wei J, Yang Y, Dong J, Wang S, Li P. Fluorometric determination of pesticides and organophosphates using nanoceria as a phosphatase mimic and an inner filter effect on carbon nanodots. Mikrochim Acta 2019; 186:66. [PMID: 30627852 DOI: 10.1007/s00604-018-3175-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/12/2018] [Indexed: 02/01/2023]
Abstract
Nanoceria with a remarkable phosphatase mimicking activity was synthesized and used to catalyze the hydrolysis of phosphate esters in pH 10 solution. The catalytic effect of nanoceria was firstly investigated by selecting p-nitrophenyl phosphate as a model substrate. The pH value, incubation temperature, reaction time, and concentration of nanoceria were optimized. The catalytic effect was then confirmed by using methyl-paraoxon as a substrate. The p-nitrophenol anion released by the enzyme mimic is yellow and exerts an inner filter effect on the fluorescence of the carbon dots (with excitation/emission maxima at 400/520 nm). Response to methyl-paraoxon is linear in the 1.125-26.25 μmol L-1 concentration range. The method was applied to the determination of pesticides in spiked Panax quinquefolius and water samples. Recoveries ranged from 85 to 103% (n = 3). The technique is rapid, reliable, and can be used for on-site detection of pesticides and organophosphates. Graphical abstract Schematic presentation of a fluorometric technique for the detection of organophosphate compound and pesticide using nanoceria as a phosphatase mimic and an inner filter effect on the blue fluorescence of carbon dots (with excitation/emission maxima at 400/520 nm).
Collapse
Affiliation(s)
- Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Yu Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Jiayi Dong
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| | - Shuangpeng Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China.
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China.
| |
Collapse
|
35
|
Duo H, Lu X, Wang S, Wang L, Guo Y, Liang X. Synthesis of magnetic metal–organic framework composites, Fe3O4-NH2@MOF-235, for the magnetic solid-phase extraction of benzoylurea insecticides from honey, fruit juice and tap water samples. NEW J CHEM 2019. [DOI: 10.1039/c9nj01988j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, a novel, fusiform-like magnetic metal–organic framework material (Fe3O4-NH2@MOF-235) was fabricated by a facile two-step solvothermal approach.
Collapse
Affiliation(s)
- Huixiao Duo
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- People's Republic of China
| | - Xiaofeng Lu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- People's Republic of China
| | - Shuai Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- People's Republic of China
| | - Licheng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- People's Republic of China
| | - Yong Guo
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- People's Republic of China
| | - Xiaojing Liang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- People's Republic of China
| |
Collapse
|
36
|
Gao T, Wang J, Hao L, Yang X, Wang C, Wu Q, Wang Z. A magnetic knitting aromatic polymer as a new sorbent for use in solid-phase extraction of organics. Mikrochim Acta 2018; 185:554. [DOI: 10.1007/s00604-018-3085-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/05/2018] [Indexed: 12/20/2022]
|