1
|
Seebunrueng K, Tamuang S, Jarujamrus P, Saengsuwan S, Patdhanagul N, Areerob Y, Sansuk S, Srijaranai S. Eco-friendly thermosensitive magnetic-molecularly-imprinted polymer adsorbent in dispersive solid-phase microextraction for gas chromatographic determination of organophosphorus pesticides in fruit samples. Food Chem 2024; 430:137069. [PMID: 37562262 DOI: 10.1016/j.foodchem.2023.137069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/12/2023]
Abstract
A thermosensitive magnetic-molecularly-imprinted polymer (TMMIP) was successfully prepared in an aqueous medium. The TMMIP was applied as an effective adsorbent in dispersive solid-phase microextraction for the selective enrichment of five organophosphorus pesticides (OPPs; diazinon, fenitrothion, fenthion, parathion-ethyl, and ethion) before analysis by gas chromatography. The polymerization was performed using mixed-valence iron hydroxide nanoparticles as the magnetic support, N-isopropyl acrylamide as the thermosensitive monomer, ethion as the template, and methacrylic acid as the functional monomer. The adsorption and desorption mechanisms of OPPs depend on their interactions with the adsorbents and solution temperature. Our methodology provides good linearity (0.50-2000 µgL-1), with a correlation determination of R2 > 0.9980, low limit of detection (0.25-0.50 µgL-1), low limit of quantitation (0.50-1.50 μg L-1), and high precision (%RSD < 7%). The developed method demonstrates excellent applicability for accurately and efficiently determining OPP residuals in fruit and vegetable samples with good recoveries (93-117%).
Collapse
Affiliation(s)
- Ketsarin Seebunrueng
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand.
| | - Suparb Tamuang
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Purim Jarujamrus
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Sayant Saengsuwan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Nopbhasinthu Patdhanagul
- General Science Department, Faculty of Science and Engineering, Kasetsart University, Sakon Nakhon 47000, Thailand
| | - Yonrapach Areerob
- Department of Industrial Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Sira Sansuk
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supalax Srijaranai
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
2
|
Bazargan M, Mirzaei M, Amiri A, Mague JT. Opioid Drug Detection in Hair Samples Using Polyoxometalate-Based Frameworks. Inorg Chem 2023; 62:56-65. [PMID: 36576501 DOI: 10.1021/acs.inorgchem.2c02658] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A series of two-dimensional (2D) polyoxometalate-based frameworks, [Ln3(PDA)3(H2O)6(PMo12O40)]·xH2O (Ln = La (1); Ce (2); Pr (3); Nd (4); PDA = 1,10-phenanthroline-2,9-dicarboxylate), have been synthesized and structurally characterized by various analytical techniques. Single-crystal X-ray diffraction reveals that 1-4 have a unique 2D layer structure in which Keggin anions have coordinated upward and downward the plane, and this feature makes them suitable candidates for surface binding of common drugs via supramolecular and electrostatic interactions. Also, the ability of 1-4 (as the first polyoxomolybdate-containing frameworks) as sorbents for the extraction and quantitative determination of opioid drugs (morphine, methadone, and pethidine) was investigated by using dispersive micro-solid-phase extraction (D-μSPE) and high-performance liquid chromatography (HPLC). The method showed wide linear ranges in the range of 0.3 to 300 ng mg-1 and low limits of detection (LODs) ranged from 0.1 to 0.2 ng mg-1 of hair.
Collapse
Affiliation(s)
- Maryam Bazargan
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Masoud Mirzaei
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.,Khorasan Science and Technology Park (KSTP), 12th km of Mashhad-Quchan Road, Mashhad, Khorasan Razavi 9185173911, Iran
| | - Amirhassan Amiri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
3
|
Polyoxometalate/reduced graphene oxide composite stabilized on the inner wall of a stainless steel tube as a sorbent for solid-phase microextraction of some parabens followed by quantification via high-performance liquid chromatography. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
4
|
Magnetic silica nanocomposite supported W6O19/amine: A powerful catalyst for the synthesis of biologically active spirooxindole-pyrans. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Bagheri AR, Aramesh N, Chen J, Liu W, Shen W, Tang S, Lee HK. Polyoxometalate-based materials in extraction, and electrochemical and optical detection methods: A review. Anal Chim Acta 2022; 1209:339509. [PMID: 35569843 DOI: 10.1016/j.aca.2022.339509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023]
Abstract
Polyoxometalates (POMs) as metal-oxide anions have exceptional properties like high negative charges, remarkable redox abilities, unique ligand properties and availability of organic grafting. Moreover, the amenability of POMs to modification with different materials makes them suitable as precursors to further obtain new composites. Due to their unique attributes, POMs and their composites have been utilized as adsorbents, electrodes and catalysts in extraction, and electrochemical and optical detection methods, respectively. A survey of the recent progress and developments of POM-based materials in these methods is therefore desirable, and should be of great interest. In this review article, POM-based materials, their properties as well as their identification methods, and analytical applications as adsorbents, electrodes and catalysts, and corresponding mechanisms of action, where relevant, are reviewed. Some current issues of the utilization of these materials and their future prospects in analytical chemistry are discussed.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Department of Chemistry, Isfahan University, Isfahan, 81746-73441, Iran
| | - Jisen Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Wenning Liu
- Department of Environmental Toxicology, University of California, Davis, CA, 95616, USA
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China.
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| |
Collapse
|
6
|
|
7
|
Bazargan M, Ghaemi F, Amiri A, Mirzaei M. Metal–organic framework-based sorbents in analytical sample preparation. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214107] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Ionic liquids in extraction techniques: Determination of pesticides in food and environmental samples. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Jagirani MS, Soylak M. Review: Microextraction Technique Based New Trends in Food Analysis. Crit Rev Anal Chem 2020; 52:968-999. [PMID: 33253048 DOI: 10.1080/10408347.2020.1846491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Food chemistry is the study and classification of the quality and origin of foods. The identification of definite biomarkers and the determination of residue contaminants such as toxins, pesticides, metals, human and veterinary drugs, which are a very common source of food-borne diseases. The food analysis is continuously demanding the improvement of more robust, sensitive, highly efficient, and economically beneficial analytical approaches to promise the traceability, safety, and quality of foods in the acquiescence with the consumers and legislation demands. The traditional methods have been used at the starting of the 20th century based on wet chemical methods. Now it existing the powerful analytical techniques used in food analysis and safety. This development has led to substantial enhancements in the analytical accuracy, precision, sensitivity, selectivity, thereby mounting the applied range of food applications. In the present decade, microextraction (micro-scale extraction) pays more attention due to its futures such as low consumption of solvent and sample, throughput analysis easy to operate, greener, robotics, and miniaturization, different adsorbents have been used in the microextraction process with unique nature recognized with wide range applications.
Collapse
Affiliation(s)
- Muhammed Saqaf Jagirani
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,National Center of Excellence in Analytical Chemistry, University of Sindh, Sindh, Pakistan
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| |
Collapse
|
10
|
Jullakan S, Bunkoed O, Pinsrithong S. Solvent-assisted dispersive liquid-solid phase extraction of organophosphorus pesticides using a polypyrrole thin film–coated porous composite magnetic sorbent prior to their determination with GC-MS/MS. Mikrochim Acta 2020; 187:677. [DOI: 10.1007/s00604-020-04649-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/15/2020] [Indexed: 01/09/2023]
|
11
|
Ghorbani M, Aghamohammadhassan M, Ghorbani H, Zabihi A. Trends in sorbent development for dispersive micro-solid phase extraction. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105250] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Preparation of magnetic flower-like molybdenum disulfide hybrid materials for the extraction of organophosphorus pesticides from environmental water samples. J Chromatogr A 2020; 1631:461583. [DOI: 10.1016/j.chroma.2020.461583] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/01/2023]
|
13
|
Saadati-Moshtaghin HR, Maleki B, Tayebee R, Kahrobaei S, Abbasinohoji F. 6-methylguanamine-Supported CoFe 2O 4: An Efficient Catalyst for One-Pot Three-Component Synthesis of Isoxazol-5(4 H)-One Derivatives. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1754865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Behrooz Maleki
- Department of Chemistry, School of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Reza Tayebee
- Department of Chemistry, School of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Sepideh Kahrobaei
- Department of Chemistry, School of Science, Hakim Sabzevari University, Sabzevar, Iran
| | | |
Collapse
|
14
|
Nasiri M, Ahmadzadeh H, Amiri A. Sample preparation and extraction methods for pesticides in aquatic environments: A review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115772] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Review of Ionic Liquids in Microextraction Analysis of Pesticide Residues in Fruit and Vegetable Samples. Chromatographia 2019. [DOI: 10.1007/s10337-019-03818-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Jiang HL, Li N, Cui L, Wang X, Zhao RS. Recent application of magnetic solid phase extraction for food safety analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115632] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
|
18
|
Amiri A, Mirzaei M, Derakhshanrad S. A nanohybrid composed of polyoxotungstate and graphene oxide for dispersive micro solid-phase extraction of non-steroidal anti-inflammatory drugs prior to their quantitation by HPLC. Mikrochim Acta 2019; 186:534. [PMID: 31312945 DOI: 10.1007/s00604-019-3694-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/08/2019] [Indexed: 11/25/2022]
Abstract
A nanohybrid was prepared from polyoxotungstate anion and graphene oxide (POT/GO) and characterized in terms of porosity by applying Fourier transform infrared and transmission electron microscopy. The nanohybrid was applied as a sorbent for the dispersive micro solid-phase extraction of the non-steroidal anti-inflammatory drugs (NSAIDs) ibuprofen, diclofenac, and naproxen. Different types of sorbents were compared, and the POT/GO nanohybrid was found to have the best adsorption affinity. The NSAIDs were quantified via HPLC with UV detection. Under the optimum conditions, the limits of detection (at an S/N ratio of 3) range between 0.02-0.03 ng.mL-1, and the linear response ranges extend from 0.08-200 ng.mL-1, respectively. The relative standard deviations (RSDs) for five replicates at three concentration levels (0.1, 5 and 100 ng.mL-1) of NSAIDs ranged from 4.1 to 6.1%. The applicability of the method was confirmed by analyzing spiked real water samples, and satisfactory results were obtained, with recoveries between 95.6 and 99.6%. Graphical abstract Schematic representation of the polyoxotungstate/graphene oxide nanohybrid preparation.
Collapse
Affiliation(s)
- Amirhassan Amiri
- Department of Chemistry, Faculty of Sciences, Hakim Sabzevari University, Sabzevar, 96179-76487, Iran.
| | - Masoud Mirzaei
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 91775-1436, Iran.
| | - Shadi Derakhshanrad
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 91775-1436, Iran
| |
Collapse
|
19
|
Amiri A, Tayebee R, Abdar A, Narenji Sani F. Synthesis of a zinc-based metal-organic framework with histamine as an organic linker for the dispersive solid-phase extraction of organophosphorus pesticides in water and fruit juice samples. J Chromatogr A 2019; 1597:39-45. [DOI: 10.1016/j.chroma.2019.03.039] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/15/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022]
|
20
|
Zhao B, Wu D, Chu H, Wang C, Wei Y. Magnetic mesoporous nanoparticles modified with poly(ionic liquids) with multi-functional groups for enrichment and determination of pyrethroid residues in apples. J Sep Sci 2019; 42:1896-1904. [PMID: 30828963 DOI: 10.1002/jssc.201900038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 12/24/2022]
Abstract
Considering that the determination of pyrethroid residues is of value for the safety of food, a new poly(ionic liquid)-functionalized magnetic mesoporous nanoparticle was designed and used as an adsorbent in magnetic solid-phase extraction for the enrichment of eight pyrethroids. The porous structure and large surface area of the mesoporous silica shell endow the adsorbent with abundant binding sites. In contrast to the reported poly(ionic liquids) with only one kind of functional group in the cationic part, the new poly(ionic liquids) with mixed cyano and phenyl groups in cationic part matched the chemical structure of the analytes to improve extraction efficiency. Under the optimum conditions, an effective method was established for the determination of eight pyrethroids in apples. Adsorption equilibrium can be quickly reached in 1 min, greatly decreasing the extraction time. The linearity range was found to be 10-200 ng/g, and the detection limits ranged from 0.24 to 1.99 ng/g. Recoveries of analytes in apple samples ranged from 87.3 to 119.0%, with relative standard deviations varying in the range of 3-21.2% (intraday) and 0.3-15.2% (interday). The results indicate that the proposed method is a good candidate for pyrethroid residues in apple samples.
Collapse
Affiliation(s)
- Bihong Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, P. R. China
| | - Dan Wu
- Sunresin New Materials, Xi'an, P. R. China
| | - Huiyuan Chu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, P. R. China
| | - Chaozhan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, P. R. China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, P. R. China
| |
Collapse
|
21
|
Mousavi KZ, Yamini Y, Karimi B, Seidi S, Khorasani M, Ghaemmaghami M, Vali H. Imidazolium-based mesoporous organosilicas with bridging organic groups for microextraction by packed sorbent of phenoxy acid herbicides, polycyclic aromatic hydrocarbons and chlorophenols. Mikrochim Acta 2019; 186:239. [PMID: 30868266 DOI: 10.1007/s00604-019-3355-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/06/2019] [Indexed: 11/26/2022]
Abstract
The authors describe the preparation of two kinds of periodic mesoporous organosilicas (PMOs). The first kind is monofunctional and has a bridged alkyl imidazolium framework (PMO-IL). The other is a two-dimensional (2D) hexagonal bifunctional periodic mesoporous organosilica (BFPMO) with bridged IL-phenyl or -ethyl units. The CPMOs were utilized as highly sensitive and stable sorbents for microextraction by packed sorbent. The materials were characterized by SEM, TEM, FT-IR, and N2 adsorption-desorption analysis. The adsorption capacities of the sorbents were investigated by using phenoxy acid herbicides as model analytes. The effects of bifunctionality and type of additional surface groups (phenyl or ethyl) on the efficiency of the extraction is emphasized. Three kinds of environmental contaminants, viz. phenoxy acid herbicides (CPAs), polycyclic aromatic hydrocarbons and chlorophenols were then studied with respect to their extraction by the sorbents. The interactions between the CPAs and the sorbents were evaluated by pH-changing processes to explore the interactions that play a major role. The selectivity of the sorbents was investigated by extraction of other types of analytes of with various polarity and charge. The BFPMOs display the typical good chemical stability of silica materials. The extraction properties are much better compared to commercial silicas. This is assumed to be due to the highly ordered mesoporous structures and the different types of probable interactions with analytes. The performance of the method was evaluated by extraction of CPAs as model analytes from aqueous samples, and quantification by GC with FID detection. Under optimized conditions, low limits of detection (0.1-0.5 μg.L-1) and a wide linearity (0.5-200 μg.L-1) were obtained. The method was applied to the trace analysis of CPAs in farm waters and rice samples. Graphical abstract Monofunctional periodic mesoporous organosilica with bridged alkyl imidazolium frameworks and bi-functional periodic mesoporous organosilica containing bridged ionic liquids and phenyl or -ethyl, have been successfully synthesized and utilized in microextractions by packed sorbent sorbents.
Collapse
Affiliation(s)
- Kobra Zavar Mousavi
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| | - Babak Karimi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gavazang, P.O. Box 45195-1159, Zanjan, Iran
| | - Shahram Seidi
- Department of Analytical Chemistry, K.N. Toosi University of Technology, Tehran, Iran
| | - Mojtaba Khorasani
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gavazang, P.O. Box 45195-1159, Zanjan, Iran
| | - Mostafa Ghaemmaghami
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology and Facility for Electron Microscopy Research, McGill University, Montreal, Quebec, H3A2A7, Canada
| |
Collapse
|
22
|
Amiri A, Ghaemi F, Maleki B. Hybrid nanocomposites prepared from a metal-organic framework of type MOF-199(Cu) and graphene or fullerene as sorbents for dispersive solid phase extraction of polycyclic aromatic hydrocarbons. Mikrochim Acta 2019; 186:131. [DOI: 10.1007/s00604-019-3246-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/05/2019] [Indexed: 01/04/2023]
|
23
|
Kermani M, Jafari MT, Saraji M. Porous magnetized carbon sheet nanocomposites for dispersive solid-phase microextraction of organophosphorus pesticides prior to analysis by gas chromatography-ion mobility spectrometry. Mikrochim Acta 2019; 186:88. [PMID: 30631951 DOI: 10.1007/s00604-018-3215-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
Abstract
Carbon sheets were attached to magnetite (Fe3O4) nanoparticles. The resulting nanocomposite is shown to be a viable sorbent for use in magnetic dispersive solid-phase microextraction of three organophosphorus pesticides. The sorbent was synthesized via the sol-gel process followed by calcination and was characterized by an X-ray diffractometer, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and Raman spectrometry techniques. The affecting parameters in the adsorption and desorption steps were assessed and optimized via response surface methodology. Following desorption with dichloromethane, the OPPs were quantified by gas chromatography along with ion mobility spectrometry detection. Under optimized conditions, the limits of detection were 1.00, 0.46 and 0.85 μg L-1 for fenthion, malathion and chlorpyrifos, respectively. Response is linear in the concentration range of 2-500 μg L-1 for fenthion and malathion, and 2-1000 μg L-1 for chlorpyrifos with the determination coefficient larger than 0.9969. The intra-day and inter-day precision were from 3 to 9% and 5 to 16%, respectively. The enrichment factor was greater than 142 for all the studied pesticides. The sorbent was used for analyze spiked water and vegetable samples and gave relative recovery higher than 82%. Graphical abstract A flowchart of the synthesis of porous magnetized carbon sheet nanocomposites and the process of the magnetic dispersive solid-phase microextraction (MD-μ-SPE) of three organophosphorus pesticides prior to analysis by gas chromatography-ion mobility spectrometry (GC-IMS).
Collapse
Affiliation(s)
- Mansoure Kermani
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad T Jafari
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Mohammad Saraji
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
24
|
Wei J, Yang Y, Dong J, Wang S, Li P. Fluorometric determination of pesticides and organophosphates using nanoceria as a phosphatase mimic and an inner filter effect on carbon nanodots. Mikrochim Acta 2019; 186:66. [PMID: 30627852 DOI: 10.1007/s00604-018-3175-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/12/2018] [Indexed: 02/01/2023]
Abstract
Nanoceria with a remarkable phosphatase mimicking activity was synthesized and used to catalyze the hydrolysis of phosphate esters in pH 10 solution. The catalytic effect of nanoceria was firstly investigated by selecting p-nitrophenyl phosphate as a model substrate. The pH value, incubation temperature, reaction time, and concentration of nanoceria were optimized. The catalytic effect was then confirmed by using methyl-paraoxon as a substrate. The p-nitrophenol anion released by the enzyme mimic is yellow and exerts an inner filter effect on the fluorescence of the carbon dots (with excitation/emission maxima at 400/520 nm). Response to methyl-paraoxon is linear in the 1.125-26.25 μmol L-1 concentration range. The method was applied to the determination of pesticides in spiked Panax quinquefolius and water samples. Recoveries ranged from 85 to 103% (n = 3). The technique is rapid, reliable, and can be used for on-site detection of pesticides and organophosphates. Graphical abstract Schematic presentation of a fluorometric technique for the detection of organophosphate compound and pesticide using nanoceria as a phosphatase mimic and an inner filter effect on the blue fluorescence of carbon dots (with excitation/emission maxima at 400/520 nm).
Collapse
Affiliation(s)
- Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Yu Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Jiayi Dong
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| | - Shuangpeng Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China.
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China.
| |
Collapse
|
25
|
Bagheri H, Karimi Zandian F, Javanmardi H, Abbasi A, Golzari Aqda T. Nanostructured molybdenum oxide in a 3D metal organic framework and in a 2D polyoxometalate network for extraction of chlorinated benzenes prior to their quantification by GC–MS. Mikrochim Acta 2018; 185:536. [DOI: 10.1007/s00604-018-3070-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/24/2018] [Indexed: 11/28/2022]
|
26
|
Mehrani Z, Ebrahimzadeh H, Aliakbar AR, Asgharinezhad AA. A poly(4-nitroaniline)/poly(vinyl alcohol) electrospun nanofiber as an efficient nanosorbent for solid phase microextraction of diazinon and chlorpyrifos from water and juice samples. Mikrochim Acta 2018; 185:384. [DOI: 10.1007/s00604-018-2911-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/05/2018] [Indexed: 12/26/2022]
|