1
|
Cox M, January J, Mokwebo KV, Yussuf ST, Sanga NA, Leve ZD, Douman SF, Iwuoha EI. Advances on Electrochemiluminescent Biosensors for TB Biomarkers. ACS Sens 2025; 10:2409-2430. [PMID: 40202785 PMCID: PMC12038885 DOI: 10.1021/acssensors.4c03517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/18/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025]
Abstract
Tuberculosis (TB) is a highly contagious bacterial infection that remains a leading cause of death and persistent threat to global health. The spread of TB is exacerbated by the major limitations of conventional diagnostic approaches, such as complex technicalities, high cost, and low sensitivity. To address these challenges, recent research has focused on using electrochemiluminescence (ECL) as an alternative detection strategy coupled to biosensors. ECL biosensors leverage electrochemically generated chemiluminescence, converting electrical energy to light, as a novel transduction mechanism for TB biosensors. This unique approach offers several advantages, namely, wide linear dynamic ranges, improved device sensitivities, and prompt response times for sensitive early detection. This Review offers a comprehensive overview of advancements in ECL biosensor configurations, including detection and amplification strategies, substrates, and the development of luminophores and coreactants tailored for TB biomarker detection. The focus is on ECL biosensor designs, including biorecognition elements like immunosensors, DNA sensors, and aptasensors, along with various immobilization strategies tailored to target specific TB biomarkers. A comprehensive discussion spans biomarker detection trends over the past decade, clinical relevance, sensitivity thresholds, and detection limits. Furthermore, widely recognized TB biomarkers commonly detected in commercial diagnostic tests are discussed alongside novel markers that, while not exclusive to TB, have demonstrated clinical importance. This Review aims to highlight the potential of ECL-based biosensors as an effective means to advance an early, reliable, and accessible TB detection approach.
Collapse
Affiliation(s)
- Meleskow Cox
- SensorLab
(University of the Western Cape Sensor Laboratories), Chemical Building University of the Western Cape, Bellville, 7535, Cape Town, South Africa
| | - Jaymi January
- SensorLab
(University of the Western Cape Sensor Laboratories), Chemical Building University of the Western Cape, Bellville, 7535, Cape Town, South Africa
- South
African Research Chair Initiative (SARChI) Chair for NanoElectrochemistry
and Sensor Technology, University of the
Western Cape, Bellville, 7535, Cape Town, South Africa
| | - Kefilwe Vanessa Mokwebo
- SensorLab
(University of the Western Cape Sensor Laboratories), Chemical Building University of the Western Cape, Bellville, 7535, Cape Town, South Africa
- South
African Research Chair Initiative (SARChI) Chair for NanoElectrochemistry
and Sensor Technology, University of the
Western Cape, Bellville, 7535, Cape Town, South Africa
| | - Sodiq T. Yussuf
- SensorLab
(University of the Western Cape Sensor Laboratories), Chemical Building University of the Western Cape, Bellville, 7535, Cape Town, South Africa
- Department
of Chemical Sciences, Olabisi Onabanjo University, P.M.B. 2002, Ago-Iwoye, Ogun State, Nigeria
| | - Nelia Abraham Sanga
- SensorLab
(University of the Western Cape Sensor Laboratories), Chemical Building University of the Western Cape, Bellville, 7535, Cape Town, South Africa
- South
African Research Chair Initiative (SARChI) Chair for NanoElectrochemistry
and Sensor Technology, University of the
Western Cape, Bellville, 7535, Cape Town, South Africa
| | - Zandile Dennis Leve
- SensorLab
(University of the Western Cape Sensor Laboratories), Chemical Building University of the Western Cape, Bellville, 7535, Cape Town, South Africa
- South
African Research Chair Initiative (SARChI) Chair for NanoElectrochemistry
and Sensor Technology, University of the
Western Cape, Bellville, 7535, Cape Town, South Africa
| | - Samantha Fiona Douman
- SensorLab
(University of the Western Cape Sensor Laboratories), Chemical Building University of the Western Cape, Bellville, 7535, Cape Town, South Africa
- Department
of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Emmanuel Iheanyichukwu Iwuoha
- SensorLab
(University of the Western Cape Sensor Laboratories), Chemical Building University of the Western Cape, Bellville, 7535, Cape Town, South Africa
- South
African Research Chair Initiative (SARChI) Chair for NanoElectrochemistry
and Sensor Technology, University of the
Western Cape, Bellville, 7535, Cape Town, South Africa
| |
Collapse
|
2
|
Zhu C, Zhao Y, Liu J. Sensitive Detection of Biomarker in Gingival Crevicular Fluid Based on Enhanced Electrochemiluminescence by Nanochannel-Confined Co 3O 4 Nanocatalyst. BIOSENSORS 2025; 15:63. [PMID: 39852114 PMCID: PMC11764429 DOI: 10.3390/bios15010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025]
Abstract
The sensitive detection of inflammatory biomarkers in gingival crevicular fluid (GCF) is highly desirable for the evaluation of periodontal disease. Luminol-based electrochemiluminescence (ECL) immunosensors offer a promising approach for the fast and convenient detection of biomarkers. However, luminol's low ECL efficiency under neutral conditions remains a challenge. This study developed an immunosensor by engineering an immunorecognition interface on the outer surface of mesoporous silica nanochannel film (SNF) and confining a Co3O4 nanocatalyst within the SNF nanochannels to improve the luminol ECL efficiency. The SNF was grown on an indium tin oxide (ITO) electrode using the simple Stöber solution growth method. A Co3O4 nanocatalyst was successfully confined within the SNF nanochannels through in situ electrodeposition, confirmed by X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. The confined Co3O4 demonstrated excellent electrocatalytic activity, effectively enhancing luminol and H2O2 oxidation and boosting the ECL signal under neutral conditions. Using interleukin-6 (IL-6) as a proof-of-concept demonstration, the epoxy functionalization of the SNF outer surface enabled the covalent immobilization of capture antibodies, forming a specific immunorecognition interface. IL-6 binding induced immunocomplex formation, which reduced the ECL signal and allowed for quantitative detection. The immunosensor showed a linear detection range for IL-6 from 1 fg mL-1 to 10 ng mL-1, with a limit of detection (LOD) of 0.64 fg mL-1. It also demonstrated good selectivity and anti-interference capabilities, enabling the successful detection of IL-6 in artificial GCF samples.
Collapse
Affiliation(s)
- Changfeng Zhu
- Department of Stomatology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing 100039, China;
| | - Yujiao Zhao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Jiyang Liu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| |
Collapse
|
3
|
Yan L, Zheng P, Wang Z, Wang W, Chen X, Liu Q. Multimodal biosensing systems based on metal nanoparticles. Analyst 2024; 149:4116-4134. [PMID: 39007333 DOI: 10.1039/d4an00140k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Biosensors are currently among the most commonly used devices for analysing biomarkers and play an important role in environmental detection, food safety, and disease diagnosis. Researchers have developed multimodal biosensors instead of single-modal biosensors to meet increasing sensitivity, accuracy, and stability requirements. Metal nanoparticles (MNPs) are beneficial for preparing core probes for multimodal biosensors because of their excellent physical and chemical properties, such as easy regulation and modification, and because they can integrate diverse sensing strategies. This review mainly summarizes the excellent physicochemical properties of MNPs applied as biosensing probes and the principles of commonly used MNP-based multimodal sensing strategies. Recent applications and possible improvements of multimodal biosensors based on MNPs are also described, among which on-site inspection and sensitive detection are particularly important. The current challenges and prospects for multimodal biosensors based on MNPs may provide readers with a new perspective on this field.
Collapse
Affiliation(s)
- Liang Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Peijia Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Zhicheng Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Wenjie Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Xiaoman Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Qi Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| |
Collapse
|
4
|
Israeli E, Okura H, Kreutz B, Piktel R, Hadji A, Tu B, Lin Z, Hawksworth DJ, Tieman BC, Strobel CJ, Ziemann R, Leary TP, Muerhoff AS, Hemken PM. Development of a new automated IL-6 immunoassay. J Immunol Methods 2022; 504:113262. [PMID: 35341761 DOI: 10.1016/j.jim.2022.113262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Quantitative detection of interleukin-6 (IL-6) in serum and plasma can help monitor immune responses and the development of acute inflammation to guide patient management. We developed an IL-6 immunoassay for use with the automated ARCHITECT system for detecting an increase in the inflammatory response. METHODS Immunized mouse sera were tested and selected B-cells were harvested for fusion with myeloma cells. A panel of monoclonal antibodies were produced, from which capture and detection monoclonal antibodies for the prototype IL-6 immunoassay were selected and screened on the ARCHITECT instrument. The antibody pair that most effectively captured and detected IL-6 was selected to develop a prototype IL-6 immunoassay. Calibrator and panel preparations using an internal recombinant IL-6 standard were compared to serum panels prepared with the IL-6 International Standard 89/548. Assay specificity and spike recovery were determined, and assay sensitivity was compared with the Roche EUA Elecsys IL-6 assay run on the cobas analyzer. RESULTS Twenty-one antibodies in 441 antibody pairs were screened. The prototype IL-6 assay showed high sensitivity with an estimated limit of detection of 0.317 pg/mL and limit of quantitation of <1.27. Spike recovery was 90%-110% in serum and plasma. The internal recombinant human IL-6 calibrator showed excellent stability for 63 days at 2-8 °C. The prototype IL-6 immunoassay was specific for IL-6, exhibited no cross reactivity to related cytokines and interleukins, and was 10-fold more sensitive than the Elecsys IL-6 assay. CONCLUSIONS The prototype ARCHITECT IL-6 automated immunoassay is a reliable and robust method for the quantitative determination of IL-6 in human serum and plasma.
Collapse
Affiliation(s)
- Eitan Israeli
- Biologics Discovery, Abbott Diagnostics, 100 Abbott Park Road, Abbott Park, IL 60064, United States of America
| | - Hideaki Okura
- Biologics Discovery, Abbott Diagnostics, 100 Abbott Park Road, Abbott Park, IL 60064, United States of America
| | - Barry Kreutz
- Biologics Discovery, Abbott Diagnostics, 100 Abbott Park Road, Abbott Park, IL 60064, United States of America
| | - Ryan Piktel
- Biologics Discovery, Abbott Diagnostics, 100 Abbott Park Road, Abbott Park, IL 60064, United States of America
| | - Abbas Hadji
- Biologics Discovery, Abbott Diagnostics, 100 Abbott Park Road, Abbott Park, IL 60064, United States of America
| | - Bailin Tu
- Biologics Discovery, Abbott Diagnostics, 100 Abbott Park Road, Abbott Park, IL 60064, United States of America
| | - Zhihong Lin
- Biologics Discovery, Abbott Diagnostics, 100 Abbott Park Road, Abbott Park, IL 60064, United States of America
| | - David J Hawksworth
- Biologics Discovery, Abbott Diagnostics, 100 Abbott Park Road, Abbott Park, IL 60064, United States of America
| | - Bryan C Tieman
- Biologics Discovery, Abbott Diagnostics, 100 Abbott Park Road, Abbott Park, IL 60064, United States of America
| | - Carolyn J Strobel
- Biologics Discovery, Abbott Diagnostics, 100 Abbott Park Road, Abbott Park, IL 60064, United States of America
| | - Robert Ziemann
- Biologics Discovery, Abbott Diagnostics, 100 Abbott Park Road, Abbott Park, IL 60064, United States of America
| | - Thomas P Leary
- Biologics Discovery, Abbott Diagnostics, 100 Abbott Park Road, Abbott Park, IL 60064, United States of America
| | - A Scott Muerhoff
- Biologics Discovery, Abbott Diagnostics, 100 Abbott Park Road, Abbott Park, IL 60064, United States of America
| | - Philip M Hemken
- Biologics Discovery, Abbott Diagnostics, 100 Abbott Park Road, Abbott Park, IL 60064, United States of America.
| |
Collapse
|
5
|
Pankratova N, Jović M, Pfeifer ME. Electrochemical sensing of blood proteins for mild traumatic brain injury (mTBI) diagnostics and prognostics: towards a point-of-care application. RSC Adv 2021; 11:17301-17319. [PMID: 34094508 PMCID: PMC8114542 DOI: 10.1039/d1ra00589h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
Traumatic Brain Injury (TBI) being one of the principal causes of death and acquired disability in the world imposes a large burden on the global economy. Mild TBI (mTBI) is particularly challenging to assess due to the frequent lack of well-pronounced post-injury symptoms. However, if left untreated mTBI (especially when repetitive) can lead to serious long-term implications such as cognitive and neuropathological disorders. Computer tomography and magnetic resonance imaging commonly used for TBI diagnostics require well-trained personnel, are costly, difficult to adapt for on-site measurements and are not always reliable in identifying small brain lesions. Thus, there is an increasing demand for sensitive point-of-care (POC) testing tools in order to aid mTBI diagnostics and prediction of long-term effects. Biomarker quantification in body fluids is a promising basis for POC measurements, even though establishing a clinically relevant mTBI biomarker panel remains a challenge. Actually, a minimally invasive, rapid and reliable multianalyte detection device would allow the efficient determination of injury biomarker release kinetics and thus support the preclinical evaluation and clinical validation of a proposed biomarker panel for future decentralized in vitro diagnostics. In this respect electrochemical biosensors have recently attracted great attention and the present article provides a critical study on the electrochemical protocols suggested in the literature for detection of mTBI-relevant protein biomarkers. The authors give an overview of the analytical approaches for transduction element functionalization, review recent technological advances and highlight the key challenges remaining in view of an eventual integration of the proposed concepts into POC diagnostic solutions.
Collapse
Affiliation(s)
- Nadezda Pankratova
- University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), School of Engineering, Institute of Life Technologies, Diagnostic Systems Research Group Route du Rawil 64 1950 Sion Switzerland
| | - Milica Jović
- University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), School of Engineering, Institute of Life Technologies, Diagnostic Systems Research Group Route du Rawil 64 1950 Sion Switzerland
| | - Marc E Pfeifer
- University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), School of Engineering, Institute of Life Technologies, Diagnostic Systems Research Group Route du Rawil 64 1950 Sion Switzerland
| |
Collapse
|
6
|
Tang J, Wu L, Lin J, Zhang E, Luo Y. Development of quantum dot-based fluorescence lateral flow immunoassay strip for rapid and quantitative detection of serum interleukin-6. J Clin Lab Anal 2021; 35:e23752. [PMID: 33760265 PMCID: PMC8128295 DOI: 10.1002/jcla.23752] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Interleukin-6 (IL-6) is an inflammatory factor that increases rapidly in response to infectious diseases including sepsis. The aim of this study is to develop a quantum dot (QD)-based fluorescence lateral flow immunoassay (LFIA) strip that can rapidly and accurately detect IL-6 levels. METHODS QD-based LFIA strips were fabricated by conjugating CdSe/ZnS QDs to the IL-6 antibody. Performance verification and clinical sample analysis were carried out to evaluate the newly developed strip. RESULTS QD-based LFIA strips were successfully fabricated. The test strip's linear range was 10-4000 pg/ml, with a linear correlation coefficient of R2 ≥ .959. The sensitivity of the test strip was 1.995 pg/ml. The recovery rate was 95.72%-102.63%, indicating satisfying accuracy. The coefficient of variation (CV) of the intra-assay was 2.148%-3.903%, while the inter-assay was 2.412%-5.293%, verifying the strip's high precision. The cross-reaction rates with various interleukins (IL-1α, IL-1β, IL-2, IL-4, and IL-8) and interferon-γ (IFN-γ) were all <0.1%. When the strip was placed in a 50°C oven for 1, 2, 3, and 4 weeks, the test results were not significantly altered compared to storage at room temperature. Furthermore, 200 clinical serum samples were analyzed to compare the strip with the Beckman chemiluminescence immunoassay (CLIA) kit, which revealed a high correlation (n = 200, R2 = .9971) for the detection of IL-6. CONCLUSIONS The QD-based test strip can rapidly and quantitatively detect IL-6 levels, thus meeting the requirement of point-of-care test (POCT) and showing excellent clinical prospects.
Collapse
Affiliation(s)
- Jinsong Tang
- Department of Clinical Laboratory, Dalang Hospital, Dongguan, China
| | - Lili Wu
- Department of Clinical Laboratory, Dalang Hospital, Dongguan, China
| | - Jingtao Lin
- Department of Clinical Laboratory, Dalang Hospital, Dongguan, China
| | - Erying Zhang
- Kingfocus Biomedical Engineering Co., Ltd, Shenzhen, China
| | - Yong Luo
- Department of Intensive Medicine, The Second Affiliated hospital of University of South China, Hengyang, China
| |
Collapse
|
7
|
Nanoparticle-assisted sacrificial synthesis of hierarchical porous carbon composite for rapid sample enrichment and ultrasensitive label-free immunosensing of interleukin-6 biomarker. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Huang X, Deng X, Su K, Qi W. Enhanced electrochemiluminescence of Au–Ag bimetallic nanocluster@CNTs–TiO 2 nanocomposite and its use in ultra-sensitive immunosensing for CEA. NEW J CHEM 2021. [DOI: 10.1039/d1nj01409a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly efficient electrochemiluminescence (ECL) of novel Au–Ag bimetallic nanocluster@CNTs–TiO2 nanocomposites (Au–Ag NCs@CNTs–TiO2 NPs) with a unique “pearl necklace” structure is realized and applied as ECL immunosensor for cancer embryo antigen (CEA).
Collapse
Affiliation(s)
- Xiaomei Huang
- Department of Chemistry and Chemical Engineering
- Sichuan University of Arts and Science
- Dazhou
- P. R. China
- Key Laboratory of Exploitation and Study of Distinctive Plants in Education Department of Sichuan Province
| | - Xiang Deng
- Department of Chemistry and Chemical Engineering
- Sichuan University of Arts and Science
- Dazhou
- P. R. China
- Key Laboratory of Exploitation and Study of Distinctive Plants in Education Department of Sichuan Province
| | - Ke Su
- Department of Chemistry and Chemical Engineering
- Sichuan University of Arts and Science
- Dazhou
- P. R. China
| | - Wenjing Qi
- Chongqing Key Laboratory of Green Synthesis and Applications
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- P. R. China
| |
Collapse
|
9
|
Revisiting Electrochemical Biosensing in the 21st Century Society for Inflammatory Cytokines Involved in Autoimmune, Neurodegenerative, Cardiac, Viral and Cancer Diseases. SENSORS 2020; 21:s21010189. [PMID: 33396710 PMCID: PMC7795835 DOI: 10.3390/s21010189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022]
Abstract
The multifaceted key roles of cytokines in immunity and inflammatory processes have led to a high clinical interest for the determination of these biomolecules to be used as a tool in the diagnosis, prognosis, monitoring and treatment of several diseases of great current relevance (autoimmune, neurodegenerative, cardiac, viral and cancer diseases, hypercholesterolemia and diabetes). Therefore, the rapid and accurate determination of cytokine biomarkers in body fluids, cells and tissues has attracted considerable attention. However, many currently available techniques used for this purpose, although sensitive and selective, require expensive equipment and advanced human skills and do not meet the demands of today’s clinic in terms of test time, simplicity and point-of-care applicability. In the course of ongoing pursuit of new analytical methodologies, electrochemical biosensing is steadily gaining ground as a strategy suitable to develop simple, low-cost methods, with the ability for multiplexed and multiomics determinations in a short time and requiring a small amount of sample. This review article puts forward electrochemical biosensing methods reported in the last five years for the determination of cytokines, summarizes recent developments and trends through a comprehensive discussion of selected strategies, and highlights the challenges to solve in this field. Considering the key role demonstrated in the last years by different materials (with nano or micrometric size and with or without magnetic properties), in the design of analytical performance-enhanced electrochemical biosensing strategies, special attention is paid to the methods exploiting these approaches.
Collapse
|
10
|
Shakeri A, Jarad NA, Terryberry J, Khan S, Leung A, Chen S, Didar TF. Antibody Micropatterned Lubricant-Infused Biosensors Enable Sub-Picogram Immunofluorescence Detection of Interleukin 6 in Human Whole Plasma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003844. [PMID: 33078567 DOI: 10.1002/smll.202003844] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/23/2020] [Indexed: 05/05/2023]
Abstract
Recent studies have shown a correlation between elevated interleukin 6 (IL-6) concentrations and the risk of respiratory failure in COVID-19 patients. Therefore, detection of IL-6 at low concentrations permits early diagnosis of worst-case outcome in viral respiratory infections. Here, a versatile biointerface is presented that eliminates nonspecific adhesion and thus enables immunofluorescence detection of IL-6 in whole human plasma or whole human blood during coagulation, down to a limit of detection of 0.5 pg mL-1 . The sensitivity of the developed lubricant-infused biosensor for immunofluorescence assays in detecting low molecular weight proteins such as IL-6 is facilitated by i) producing a bioink in which the capture antibody is functionalized by an epoxy-based silane for covalent linkage to the fluorosilanized surface and ii) suppressing nonspecific adhesion by patterning the developed bioink into a lubricant-infused coating. The developed biosensor addresses one of the major challenges for biosensing in complex fluids, namely nonspecific adhesion, therefore paving the way for highly sensitive biosensing in complex fluids.
Collapse
Affiliation(s)
- Amid Shakeri
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Noor Abu Jarad
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Jeff Terryberry
- SQI Diagnostics System Inc, 36 Meteor Dr, Toronto, ON M9W 1A4, Canada
| | - Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Ashlyn Leung
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Simeng Chen
- SQI Diagnostics System Inc, 36 Meteor Dr, Toronto, ON M9W 1A4, Canada
| | - Tohid F Didar
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
11
|
Bernotiene E, Bagdonas E, Kirdaite G, Bernotas P, Kalvaityte U, Uzieliene I, Thudium CS, Hannula H, Lorite GS, Dvir-Ginzberg M, Guermazi A, Mobasheri A. Emerging Technologies and Platforms for the Immunodetection of Multiple Biochemical Markers in Osteoarthritis Research and Therapy. Front Med (Lausanne) 2020; 7:572977. [PMID: 33195320 PMCID: PMC7609858 DOI: 10.3389/fmed.2020.572977] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Biomarkers, especially biochemical markers, are important in osteoarthritis (OA) research, clinical trials, and drug development and have potential for more extensive use in therapeutic monitoring. However, they have not yet had any significant impact on disease diagnosis and follow-up in a clinical context. Nevertheless, the development of immunoassays for the detection and measurement of biochemical markers in OA research and therapy is an active area of research and development. The evaluation of biochemical markers representing low-grade inflammation or extracellular matrix turnover may permit OA prognosis and expedite the development of personalized treatment tailored to fit particular disease severities. However, currently detection methods have failed to overcome specific hurdles such as low biochemical marker concentrations, patient-specific variation, and limited utility of single biochemical markers for definitive characterization of disease status. These challenges require new and innovative approaches for development of detection and quantification systems that incorporate clinically relevant biochemical marker panels. Emerging platforms and technologies that are already on the way to implementation in routine diagnostics and monitoring of other diseases could potentially serve as good technological and strategic examples for better assessment of OA. State-of-the-art technologies such as advanced multiplex assays, enhanced immunoassays, and biosensors ensure simultaneous screening of a range of biochemical marker targets, the expansion of detection limits, low costs, and rapid analysis. This paper explores the implementation of such technologies in OA research and therapy. Application of novel immunoassay-based technologies may shed light on poorly understood mechanisms in disease pathogenesis and lead to the development of clinically relevant biochemical marker panels. More sensitive and specific biochemical marker immunodetection will complement imaging biomarkers and ensure evidence-based comparisons of intervention efficacy. We discuss the challenges hindering the development, testing, and implementation of new OA biochemical marker assays utilizing emerging multiplexing technologies and biosensors.
Collapse
Affiliation(s)
- Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Edvardas Bagdonas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Gailute Kirdaite
- Department of Experimental, Preventive and Clinical Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Paulius Bernotas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ursule Kalvaityte
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | | | - Heidi Hannula
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland
| | - Gabriela S. Lorite
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland
| | - Mona Dvir-Ginzberg
- Laboratory of Cartilage Biology, Institute of Dental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ali Guermazi
- Department of Radiology, Veterans Affairs Boston Healthcare System, Boston University School of Medicine, Boston, MA, United States
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- Centre for Sport, Exercise and Osteoarthritis Versus Arthritis, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
12
|
Cheng Z, Wang R, Xing Y, Zhao L, Choo J, Yu F. SERS-based immunoassay using gold-patterned array chips for rapid and sensitive detection of dual cardiac biomarkers. Analyst 2020; 144:6533-6540. [PMID: 31553332 DOI: 10.1039/c9an01260e] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cardiac troponin I (cTnI) and creatine kinase-MB (CK-MB) are important diagnostic biomarkers for acute myocardial infarction (AMI). Many efforts have been undertaken to develop highly sensitive detection methods for the quantitative analysis of these dual targets. However, current immunoassay methods are inadequate for accurate measurement of cTnI and CK-MB, due to their limited detection sensitivity. Thus, there is still an urgent demand for a new technique that will enable ultrahigh sensitive detection of these biomarkers. In this study, we developed a surface-enhanced Raman scattering (SERS)-based sandwich immunoassay platform for the ultrasensitive detection of cTnI and CK-MB. In this study, a monoclonal-antibody-immobilized gold-patterned chip was used as a SERS active template. Target samples and polyclonal-antibody-conjugated Au@Ag core-shell nanoparticles were then added. Using this SERS platform, the concentration of biomarkers could be quantified by monitoring the characteristic Raman peak intensity of Raman reporter molecules. Under optimized conditions, the limits of detection (LODs) were estimated to be 8.9 pg mL-1 and 9.7 pg mL-1 for cTnI and CK-MB, respectively. Thus, the proposed SERS-based immunoassay has great potential to be an effective diagnostic tool for the rapid and accurate detection of cTnI and CK-MB.
Collapse
Affiliation(s)
- Ziyi Cheng
- Institute of Functional Materials and Molecular Imaging, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, College of Clinical Medicine, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China.
| | | | | | | | | | | |
Collapse
|
13
|
Rapid and sensitive detection of interleukin-6 in serum via time-resolved lateral flow immunoassay. Anal Biochem 2019; 588:113468. [PMID: 31585097 DOI: 10.1016/j.ab.2019.113468] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 01/10/2023]
Abstract
Interleukin 6 (IL-6) is an interleukin that acts as both a proinflammatory and anti-inflammatory cytokine. It can be used as a potential diagnostic biomarker for sepsis. The aim of this study was to establish an easy-to-use detection kit for rapid, quantitative and on-site detection of IL-6. To develop the new IL-6 quantitative detecting kit, a double-antibody sandwich immunofluorescent assay was employed based on europium nanoparticles (Eu-np) combined with lateral flow immunoassay (LFIA). The performance of the new developed kit was evaluated in the aspects of parallel analysis, linearity, sensitivity, precision, accuracy, specificity and clinical sample analysis. Two-hundred and fourteen serum samples were used to carry out the clinical sample analysis. The new IL-6 quantitative detecting kit exhibited a wide linear range (2-500 pg/mL) and a good sensitivity (0.37 pg/mL). The intra-assay coefficient of variation (CV) and the inter-assay CV were 5.92%-8.87% and 7.59%-9.04%, respectively. The recovery rates ranged from 102% to 106%. Furthermore, a high correlation (n = 214, r = 0.9756, p < 0.01) was obtained when compared with SIEMENS CLIA IL-6 kit. Thus, the new quantitative method for detecting IL-6 has been successfully established. The results indicated that the newly-developed strip based on Eu-np combined with LFIA was a facile, fast, highly sensitive, low-cost, reliable biosensor and suitable for rapid and point-of-care test (POCT) for IL-6 in serum.
Collapse
|
14
|
Simultaneous colorimetric determination of acute myocardial infarction biomarkers by integrating self-assembled 3D gold nanovesicles into a multiple immunosorbent assay. Mikrochim Acta 2019; 186:138. [DOI: 10.1007/s00604-019-3242-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/05/2019] [Indexed: 12/17/2022]
|