1
|
Chen J, Fei M, Ni M, Wang Y, Liu Z, Xie Y, Zhao P, Zhang Z, Fei J. Multilayer Ti 3C 2-CNTs-Au Loaded with Cyclodextrin-MOF for Enhanced Selective Detection of Rutin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310217. [PMID: 38361221 DOI: 10.1002/smll.202310217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/25/2024] [Indexed: 02/17/2024]
Abstract
In this work, multi-layer Ti3C2 - carbon nanotubes - gold nanoparticles (Ti3C2-CNTs-Au) and cyclodextrin metal-organic framework - carbon nanotubes (CD-MOF-CNTs) have been prepared by in situ growth method and used to construct the ultra-sensitive rutin electrochemical sensor for the first time. Among them, the large number of metal active sites of Ti3C2, the high electron transfer efficiency of CNTS, and the good catalytic properties of AuNPs significantly enhance the electrochemical properties of the composite carbon nanomaterials. Interestingly, CD-MOF has a unique host-guest recognition and a large number of cavities, molecular gaps, and surface reactive groups, which gives the composite outstanding accumulation properties and selectivity for rutin. Under the optimized conditions, the constructed novel sensor has satisfactory detection performance for rutin in the range of 2 × 10-9 to 8 × 10-7 M with a limit of detection of 6.5 × 10-10 M. In addition, the sensor exhibits amazing anti-interference performance against rutin in some flavonoid compounds and can be used to test natural plant samples (buckwheat, Cymbopogon distans, and flos sophorae immaturus). This work has promising applications in the field of environmental and food analysis, and exploring new directions for the application of Mxene-based composites.
Collapse
Affiliation(s)
- Jia Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Maoheng Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Meijun Ni
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yilin Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Zhifang Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yixi Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Zhiyong Zhang
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, P. R. China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing, 100871, P. R. China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, P. R. China
| |
Collapse
|
2
|
Zhang Y, Peng X, Gao F. Insights in Electrochemical Determination of Quercetin in Peach Vinegar by the Hexagonal Platinum Nanocrystal. ACS OMEGA 2024; 9:1850-1857. [PMID: 38222573 PMCID: PMC10785628 DOI: 10.1021/acsomega.3c08513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
Peach vinegar is a popular condiment that is thought to have various health benefits. However, the low levels of quercetin and complex detection environment in peach vinegar make it difficult to detect using traditional methods. Electrochemical detection is a promising solution because it is sensitive, inexpensive, and provides real-time results. Herein, a hexagonal Pt nanocrystal was developed as an electrocatalyst for selective detection of quercetin in peach vinegar, and a comprehensive examination was given of the electrochemical characteristics of quercetin when applied to electrodes modified with platinum. The morphology and crystal properties of Pt nanocrystals were analyzed, and the Pt-modified electrode was found to exhibit strong electrocatalytic effects toward quercetin in peach vinegar with a high sensitivity of 58 μA μM-1. Furthermore, the investigation showcased exceptional specificity, consistency, sustained durability, and replicability of the Pt-modified electrode in identifying quercetin. The detection result of the Pt-modified electrode tested in three different peach vinegar samples demonstrated its practical utility in real-world applications. Overall, the findings of this study may have important implications for the development of more efficient and sensitive electrochemical sensors for the detection of quercetin and other analytes in vinegar.
Collapse
Affiliation(s)
- Ying Zhang
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, P. R. China
| | - Xilin Peng
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, P. R. China
| | - Feng Gao
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, P. R. China
| |
Collapse
|
3
|
Medvedeva AS, Dyakova EI, Kuznetsova LS, Mironov VG, Gurkin GK, Rogova TV, Kharkova AS, Melnikov PV, Naumova AO, Butusov DN, Arlyapov VA. A Two-Mediator System Based on a Nanocomposite of Redox-Active Polymer Poly(thionine) and SWCNT as an Effective Electron Carrier for Eukaryotic Microorganisms in Biosensor Analyzers. Polymers (Basel) 2023; 15:3335. [PMID: 37631392 PMCID: PMC10459408 DOI: 10.3390/polym15163335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Electropolymerized thionine was used as a redox-active polymer to create a two-mediated microbial biosensor for determining biochemical oxygen demand (BOD). The electrochemical characteristics of the conducting system were studied by cyclic voltammetry and electrochemical impedance spectroscopy. It has been shown that the most promising in terms of the rate of interaction with the yeast B. adeninivorans is the system based on poly(thionine), single-walled carbon nanotubes (SWCNT), and neutral red (kint = 0.071 dm3/(g·s)). The biosensor based on this system is characterized by high sensitivity (the lower limit of determined BOD concentrations is 0.4 mgO2/dm3). Sample analysis by means of the developed analytical system showed that the results of the standard dilution method and those using the biosensor differed insignificantly. Thus, for the first time, the fundamental possibility of effectively using nanocomposite materials based on SWCNT and the redox-active polymer poly(thionine) as one of the components of two-mediator systems for electron transfer from yeast microorganisms to the electrode has been shown. It opens up prospects for creating stable and highly sensitive electrochemical systems based on eukaryotes.
Collapse
Affiliation(s)
- Anastasia S. Medvedeva
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| | - Elena I. Dyakova
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| | - Lyubov S. Kuznetsova
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| | - Vladislav G. Mironov
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| | - George K. Gurkin
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| | - Tatiana V. Rogova
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| | - Anna S. Kharkova
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| | - Pavel V. Melnikov
- M. V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119571 Moscow, Russia
| | - Alina O. Naumova
- M. V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119571 Moscow, Russia
| | - Denis N. Butusov
- Computer-Aided Design Department, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| | - Vyacheslav A. Arlyapov
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| |
Collapse
|
4
|
Bai HJ, Qi DY, Li HW, Wu Y. Assembly-Induced Emission Enhancement in Glutathione-Capped Bimetallic Gold and Copper Nanoclusters by Al 3+ Ions and Further Application in Myricetin Determination. Molecules 2023; 28:758. [PMID: 36677816 PMCID: PMC9864343 DOI: 10.3390/molecules28020758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/31/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
A significant emission enhancement (>100-fold) of glutathione-capped bimetallic gold and copper nanoclusters (AuCuNC@GSH) was achieved by assembling with Al3+ ions and by assembly-induced emission enhancement (AIEE). Further chelation of myricetin to Al3+ resulted in emission quenching of AuCuNC-Al3+, which was applied to specifically detect myricetin. Two linear responses were shown in the range of 0−1.5 μM and 1.5−50 μM, separately, leading to a low limit of detection at 8.7 nM. The method was successfully and accurately applied to myricetin determination in grape juice, which showed good application for real samples. Finally, the in-depth mechanism revealed that both the chelation of myricetin and Al3+ and the inner filter effect (IFE) between myricetin-Al3+ and AuCuNC-Al3+ greatly contributed to the quenching response of myricetin. Therefore, the present study provides an easy way to improve the fluorescence property of metal nanoclusters. Additionally, it supplies a cost-effective and easily performed approach to detect myricetin with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Hao-Jie Bai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2 Liutiao Road, Changchun 130023, China
| | - De-Yan Qi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2 Liutiao Road, Changchun 130023, China
| | - Hong-Wei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2 Liutiao Road, Changchun 130023, China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2 Liutiao Road, Changchun 130023, China
| |
Collapse
|
5
|
Vinothkumar V, Sakthivel R, Chen SM, Kim TH. Facile design of wolframite type CoWO4 nanoparticles: A selective and simultaneous electrochemical detection of quercetin and rutin. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Jiang C, Xie L, Wang Y, Liang J, Li H, Luo L, Li T, Liang Z, Tang L, Ning D, Ya Y, Yan F. Highly sensitive electrochemical detection of myricetin in food samples based on the enhancement effect of Al-MOFs. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3521-3528. [PMID: 36018228 DOI: 10.1039/d2ay00957a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microporous aluminum-based metal-organic frameworks (CAU-1) are used to develop a simple and sensitive electrochemical sensor for myricetin (MYR) based on a modified carbon paste electrode (CPE) for the first time. The morphologies and electrochemical properties of the as-synthesized CAU-1 are studied utilizing various analytical methods including scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, N2 adsorption-desorption, and electrochemical impedance spectroscopy. In terms of electrochemical oxidation of MYR, CAU-1/CPE with its large number of active micropores and rapid electron transfer demonstrates superior performance compared to the bare CPE. Under optimized conditions, the calibration curve for MYR exhibits a linear range of 1.0-10 μg L-1 and 10-1000 μg L-1 with a detection limit of 0.50 μg L-1. The developed CAU-1/CPE exhibits superior analytical characteristics, compared to previously reported electrochemical sensors for MYR detection. Furthermore, CAU-1/CPE is employed to determine MYR in Myrica bark samples, and the results are consistent with those obtained by high-performance liquid chromatography, demonstrating the excellent potential of CAU-1/CPE for the rapid analysis of MYR in complicated real samples.
Collapse
Affiliation(s)
- Cuiwen Jiang
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Liping Xie
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Yanli Wang
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Jing Liang
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Huiling Li
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Lihong Luo
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Tao Li
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Zhongdan Liang
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Li Tang
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Dejiao Ning
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Yu Ya
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Feiyan Yan
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| |
Collapse
|
7
|
Kuznetsova LS, Arlyapov VA, Kamanina OA, Lantsova EA, Tarasov SE, Reshetilov AN. Development of Nanocomposite Materials Based on Conductive Polymers for Using in Glucose Biosensor. Polymers (Basel) 2022; 14:polym14081543. [PMID: 35458293 PMCID: PMC9026068 DOI: 10.3390/polym14081543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 12/11/2022] Open
Abstract
Electropolymerized neutral red, thionine, and aniline were used as part of hybrid nanocomposite conductive polymers, to create an amperometric reagent-less biosensor for glucose determination. The structure of the obtained polymers was studied using infrared (IR) spectroscopy and scanning electron microscopy. Electrochemical characteristics were studied by cyclic voltammetry and impedance spectroscopy. It was shown that, from the point of view of both the rate of electron transfer to the electrode, and the rate of interaction with the active center of glucose oxidase (GOx), the most promising is a new nanocomposite based on poly(neutral red) (pNR) and thermally expanded graphite (TEG). The sensor based on the created nanocomposite material is characterized by a sensitivity of 1000 ± 200 nA × dm3/mmol; the lower limit of the determined glucose concentrations is 0.006 mmol/L. The glucose biosensor based on this nanocomposite was characterized by a high correlation (R2 = 0.9828) with the results of determining the glucose content in human blood using the standard method. Statistical analysis did not reveal any deviations of the results obtained using this biosensor and the reference method. Therefore, the developed biosensor can be used as an alternative to the standard analysis method and as a prototype for creating sensitive and accurate glucometers, as well as biosensors to assess other metabolites.
Collapse
Affiliation(s)
- Lyubov S. Kuznetsova
- Laboratory of Biologically Active Compounds and Biocomposites, Tula State University, Lenin pr. 92, 300012 Tula, Russia; (L.S.K.); (O.A.K.); (E.A.L.)
| | - Vyacheslav A. Arlyapov
- Laboratory of Biologically Active Compounds and Biocomposites, Tula State University, Lenin pr. 92, 300012 Tula, Russia; (L.S.K.); (O.A.K.); (E.A.L.)
- Correspondence:
| | - Olga A. Kamanina
- Laboratory of Biologically Active Compounds and Biocomposites, Tula State University, Lenin pr. 92, 300012 Tula, Russia; (L.S.K.); (O.A.K.); (E.A.L.)
| | - Elizaveta A. Lantsova
- Laboratory of Biologically Active Compounds and Biocomposites, Tula State University, Lenin pr. 92, 300012 Tula, Russia; (L.S.K.); (O.A.K.); (E.A.L.)
| | - Sergey E. Tarasov
- Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, pr. Science, 5, 142290 Moscow, Russia; (S.E.T.); (A.N.R.)
| | - Anatoly N. Reshetilov
- Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, pr. Science, 5, 142290 Moscow, Russia; (S.E.T.); (A.N.R.)
| |
Collapse
|
8
|
Ziyatdinova GK, Zhupanova AS, Budnikov HC. Electrochemical Sensors for the Simultaneous Detection of Phenolic Antioxidants. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822020125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Huang J, Cheng W, Li Y. 3D carbonized wood-based integrated electrochemical immunosensor for ultrasensitive detection of procalcitonin antigen. Talanta 2022; 238:122991. [PMID: 34857324 DOI: 10.1016/j.talanta.2021.122991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/28/2022]
Abstract
This work presents a novel 3D carbonized wood-based integrated electrochemical immunosensor for ultrasensitive detection of procalcitonin (PCT) antigen at picogram level, achieving a wide linear detection range for PCT concentrations range from 0.05 to 90 pg mL-1 with a low detection limit of 0.014 pg mL-1 (S/N = 3), outperforming the previous reports. 3D carbonized wood as a new immunosensor matrix is used for electrochemical PCT biosensing, improving the stability of electrode and overcoming the disadvantages of traditional glassy carbon electrode (GCE). It obtained an excellent detection result, due to it has abundant mutual crisscross microchannels that promote the reactants and electrons transfer, greatly amplify the current signal. This novel sandwich-type electrochemical immunosensor is composed of 3D carbonized wood, carboxylic multi-walled carbon nanotube (cMWCNT), Au@Co3O4 core-shell nanosphere and Au/single layer nitrogen-doped graphene (Au/SL-NG), when it is applied for PCT detection in real clinical samples, it exhibits high accuracy same as enzyme-linked immunosorbent assay (ELISA) method.
Collapse
Affiliation(s)
- Jianzhi Huang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, People's Republic of China.
| | - Wenxue Cheng
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, People's Republic of China
| | - Yanliang Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, People's Republic of China.
| |
Collapse
|
10
|
George SA, Rajeev R, Thadathil DA, Varghese A. A Comprehensive Review on the Electrochemical Sensing of Flavonoids. Crit Rev Anal Chem 2022; 53:1133-1173. [PMID: 35001755 DOI: 10.1080/10408347.2021.2008863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Flavonoids are bioactive polyphenolic compounds, widespread in the plant kingdom. Flavonoids possess broad-spectrum pharmacological effects due to their antioxidant, anti-tumor, anti-neoplastic, anti-mutagenic, anti-microbial, anti-inflammatory, anti-allergic, immunomodulatory, and vasodilatory properties. Care must be taken, since excessive consumption of flavonoids may have adverse effects. Therefore, proper identification, quantification and quality evaluations of flavonoids in edible samples are necessary. Electroanalytical approaches have gained much interest for the analysis of redox behavior and quantification of different flavonoids. Compared to various conventional methods, electrochemical techniques for the analysis of flavonoids offer advantages of high sensitivity, selectivity, low cost, simplicity, biocompatibility, easy on-site evaluation, high accuracy, reproducibility, wide linearity of detection, and low detection limits. This review article focuses on the developments in electrochemical sensing of different flavonoids with emphasis on electrode modification strategies to boost the electrocatalytic activity and analytical efficiency.
Collapse
Affiliation(s)
| | - Rijo Rajeev
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | | | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| |
Collapse
|
11
|
Yu X, Yu W, Zhang X, Wang Y, Wang S, Zhai H. Simultaneous determination of flavonoids and anthraquinones in honey by using SPE-CE-LIF. Anal Biochem 2021; 631:114373. [PMID: 34509444 DOI: 10.1016/j.ab.2021.114373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022]
Abstract
Based on advantages of capillary electrophoresis (CE), a new solid-phase extraction (SPE) coupled with CE has been developed for preconcentration, enrichment and determination of anthraquinones and flavonoids (rutin, emodin, quercetin, 1,8-dihydroxyanthraquinone) in honey. The environmental-friendly chitin activated after an easy processing is selected as the adsorbent to enrich analytes. Then, chitin was filled into the filter as the solid phase. To improve the extraction effect, some key parameters of extraction were optimized. Under the optional extraction conditions, the chitin showed excellent adsorption capacity and selectivity over rutin, emodin, quercetin, and 1,8-dihydroxyanthraquinone, with enrichment factors reaching 5 folds. The CE coupled with fluorescence detection was used for the detection. Results prove the method is simple, fast, and highly sensitive, with the limit of detection (LOD) is 3.00-200.0 ng/mL; the recovery is 90.0-107.0%, and relative standard deviation of (RSD) is 1.8-8.3%.
Collapse
Affiliation(s)
- Xiao Yu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Wanxiang Yu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiaohui Zhang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yongjie Wang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shumei Wang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Haiyun Zhai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Hu S, Chen H, Zhan X, Qin X, Kuang Y, Li M, Liang Z, Yang J, Su Z. One-pot electrodeposition of metal organic frameworks composites accelerated by electroreduced graphene oxide and gold nanoparticles for rutin electroanalysis. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Dalkiran B, Brett CMA. Polyphenazine and polytriphenylmethane redox polymer/nanomaterial-based electrochemical sensors and biosensors: a review. Mikrochim Acta 2021; 188:178. [PMID: 33913010 DOI: 10.1007/s00604-021-04821-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/02/2021] [Indexed: 12/01/2022]
Abstract
In recent years, an increasing number of studies has demonstrated that redox polymers can be used in simple and effective electrochemical sensing platforms due to their fast electron transfer and electrocatalytic ability. To develop more sensitive and selective electrochemical (bio)sensors, the electrocatalytic properties of redox polymers and the electrical, mechanical, and catalytic properties of various nanomaterials are combined. This review aims to summarize and contribute to the development of (bio)sensors based on polyphenazine or polytriphenylmethane redox polymers combined with nanomaterials, including carbon-based nanomaterials, metal/metal oxide, and semiconductor nanoparticles. The synthesis, preparation, and modification of these nanocomposites is presented and the contribution of each material to the performance of (bio)sensor has been be examined. It is explained how the combined use of these redox polymers and nanomaterials as a sensing platform leads to improved analytical performance of the (bio)sensors. Finally, the analytical performance characteristics and practical applications of polyphenazine and polytriphenylmethane redox polymer/nanomaterial-based electrochemical (bio)sensors are compared and discussed.
Collapse
Affiliation(s)
- Berna Dalkiran
- Department of Chemistry, University of Coimbra, CEMMPRE, 3004-535, Coimbra, Portugal.,Department of Chemistry, Faculty of Science, Ankara University, 06100, Ankara, Turkey
| | - Christopher M A Brett
- Department of Chemistry, University of Coimbra, CEMMPRE, 3004-535, Coimbra, Portugal.
| |
Collapse
|
14
|
Askari N, Salarizadeh N, Askari MB. Electrochemical determination of rutin by using NiFe 2O 4 nanoparticles-loaded reduced graphene oxide. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN ELECTRONICS 2021; 32:9765-9775. [PMID: 38624849 PMCID: PMC7954365 DOI: 10.1007/s10854-021-05636-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/24/2021] [Indexed: 05/10/2023]
Abstract
A binary transition metal oxide containing nickel and iron (NiFe2O4) and hybridization of this nanomaterial with reduced graphene oxide (rGO) are synthesized by the hydrothermal method. X-ray diffraction (XRD) and Raman spectroscopy confirm the successful synthesis of these materials. Also, scanning electron microscope (SEM) and transmission electron microscope (TEM) images illustrated the particle morphology with the particle size of 20 nm. The synthesized material is then examined as a sensor on the surface of the glassy carbon electrode to detect a very small amount of rutin. Some electrochemical tests such as cyclic voltammetry, differential pulse voltammetry (DPV), and impedance spectroscopy indicate the remarkable accuracy of this sensor and its operation in a relatively wide range of concentrations of rutin (100 nM-100 µM). The accuracy of the proposed electrochemical sensors is approximately 100 nM in 0.1 M PBS, (pH = 3) which is relatively impressive and can be reported. Also, the stability rate after 100 DPV was about 95 %, which is a considerable and relatively excellent value. Considering the very good results, it seems that the NiFe2O4-rGO can be considered as a new proposal in the development of accurate and inexpensive electrochemical sensors.
Collapse
Affiliation(s)
- Nahid Askari
- Department of Biotechnology, Institute of Sciences and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Navvabeh Salarizadeh
- Protein Biotechnology Research Lab (PBRL), School of Biology, College of Science, University of Tehran, Tehran, Iran
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Phycology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Bagher Askari
- Department of Physics, Faculty of Science, University of Guilan, P.O. Box: 41335-1914, Rasht, Iran
- Department of Physics, Payame Noor University, P.O.Box: 19395-3697, Tehran, Iran
| |
Collapse
|
15
|
Ghoorchian A, Madrakian T, Afkhami A, Bagheri H. Spectroelectrochemical and electrochromic behavior of poly(methylene blue) and poly(thionine)-modified multi-walled carbon nanotubes. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04901-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
16
|
In-situ and controllable synthesis of graphene-gold nanoparticles/molecularly imprinted polymers composite modified electrode for sensitive and selective rutin detection. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Zhang B, Jaouhari AE, Wu X, Liu W, Zhu J, Liu X. Synthesis and characterization of PEDOT-MC decorated AgNPs for voltammetric detection of rutin in real samples. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
18
|
Hu J, Zhang Z. Application of Electrochemical Sensors Based on Carbon Nanomaterials for Detection of Flavonoids. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2020. [PMID: 33066360 PMCID: PMC7602283 DOI: 10.3390/nano10102020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022]
Abstract
Flavonoids have a variety of physiological activities such as anti-free radicals, regulating hormone levels, antibacterial factors, and anti-cancer factors, which are widely present in edible and medicinal plants. Real-time detection of flavonoids is a key step in the quality control of diverse matrices closely related to social, economic, and health issues. Traditional detection methods are time-consuming and require expensive equipment and complicated working conditions. Therefore, electrochemical sensors with high sensitivity and fast detection speed have aroused extensive research interest. Carbon nanomaterials are preferred material in improving the performance of electrochemical sensing. In this paper, we review the progress of electrochemical sensors based on carbon nanomaterials including carbon nanotubes, graphene, carbon and graphene quantum dots, mesoporous carbon, and carbon black for detecting flavonoids in food and drug homologous substances in the last four years. In addition, we look forward to the prospects and challenges of this research field.
Collapse
Affiliation(s)
| | - Zhenguo Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety, College of Life Sciences, Shandong Normal University, Jinan 250014, China;
| |
Collapse
|
19
|
Fu Y, You Z, Xiao A, Liu L, Zhou W. Electrochemical evaluation of the antioxidant capacity of natural compounds on glassy carbon electrode modified with guanine-, polythionine-, and nitrogen-doped graphene. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AbstractAn electrochemical sensor based on guanine-, polythionine-, and nitrogen-doped graphene modified glassy carbon electrode (G/PTH/NG/GCE) was fabricated and applied for antioxidant capacity evaluation of natural compounds and complexes in electrochemical method since natural sources of active compounds exhibited various antioxidant activities. When the antioxidants existed in the system, the generated hydroxyl radicals were scavenged and the damage to guanine immobilized on the electrode was reduced less resulting in the oxidation peak current increased in square wave voltammetry. After the modifications of polythionine- and nitrogen-doped graphene, the oxidation peak current was improved. The effects of pH, incubation time, and concentrations of guanine and Fe2+ ions on the performances of the electrode were investigated and optimized. The G/PTH/NG/GCE showed good linearity, reproducibility, and storage stability for antioxidant capacity evaluation of ascorbic acid at the optimum conditions. The antioxidant capacities of three flavonoids and three plant extracts were measured using the G/PTH/NG/GCE and DPPH methods. Myricetin showed the highest antioxidant capacity in both electrochemical and DPPH methods. The proposed G/PTH/NG/GCE exhibited easy fabrication procedure, rapid detection time, and low cost for the detection of antioxidant activity for various kinds of samples.
Collapse
Affiliation(s)
- Yafen Fu
- Characteristic Fruit and Vegetable Research Office, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, People's Republic of China
| | - Zongyi You
- Characteristic Fruit and Vegetable Research Office, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, People's Republic of China
| | - Aiping Xiao
- Characteristic Fruit and Vegetable Research Office, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, People's Republic of China
| | - Liangliang Liu
- Characteristic Fruit and Vegetable Research Office, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, People's Republic of China
| | - Weien Zhou
- Hunan Fangsheng Pharmaceutical Co., Ltd, Changsha, 410205, People's Republic of China
| |
Collapse
|
20
|
Yu W, Tang Y, Sang Y, Liu W, Wang S, Wang X. Preparation of a carboxylated single-walled carbon-nanotube-chitosan functional layer and its application to a molecularly imprinted electrochemical sensor to quantify semicarbazide. Food Chem 2020; 333:127524. [PMID: 32679418 DOI: 10.1016/j.foodchem.2020.127524] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/21/2020] [Accepted: 07/05/2020] [Indexed: 12/26/2022]
Abstract
Semicarbazide (SEM) is a protein-bound nitrofurazone metabolite that is detrimental to human health. Therefore, to ensure food safety, it is necessary to detect SEM in food samples. To this end, we developed a novel electrochemical sensor to detect SEM by using a molecularly imprinted polymer (MIP) as the recognition element. Computer-aided molecular modelling was performed to guide the synthesis of the MIP, and subsequently, MIP/carboxylated single-walled carbon-nanotubes/chitosan (MIP/SWNTs-COOH/CS) was prepared as the sensing platform to develop the electrochemical sensor. The linear range of the sensor was 0.04-7.6 ng mL-1, with a detection limit of 0.025 ng mL-1. The sensor was successfully applied to detect SEM in four different real samples, with recoveries ranging from 83.16% to 93.40%. The results indicated that the fabricated electrochemical sensor can be widely applied to detect SEM in the environment and in agri-food products.
Collapse
Affiliation(s)
- Wenlong Yu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, PR China
| | - Yiwei Tang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, PR China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, PR China
| | - Weihua Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, PR China
| | - Shuo Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, PR China; Medical College, Nankai University, Tianjin, PR China
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, PR China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), PR China.
| |
Collapse
|
21
|
Nitrogen-doped graphene-ionic liquid-glassy carbon microsphere paste electrode for ultra-sensitive determination of quercetin. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
El Jaouhari A, Yan L, Zhu J, Zhao D, Zaved Hossain Khan M, Liu X. Enhanced molecular imprinted electrochemical sensor based on zeolitic imidazolate framework/reduced graphene oxide for highly recognition of rutin. Anal Chim Acta 2020; 1106:103-114. [DOI: 10.1016/j.aca.2020.01.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/25/2019] [Accepted: 01/17/2020] [Indexed: 01/19/2023]
|
23
|
Au nanoparticles @metal organic framework/polythionine loaded with molecularly imprinted polymer sensor: Preparation, characterization, and electrochemical detection of tyrosine. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114052] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Ansari SH, Arvand M. A magnetic nanocomposite prepared from electrospun CoFe 2O 4 nanofibers and graphene oxide as a material for highly sensitive determination of rutin. Mikrochim Acta 2020; 187:103. [PMID: 31912294 DOI: 10.1007/s00604-019-4068-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 12/06/2019] [Indexed: 12/29/2022]
Abstract
A magnetic bar carbon paste electrode (MBCPE) modified with cobalt ferrite magnetic electrospun nanofibers (NFs) and graphene oxide (GO) is described for the electrochemical determination of rutin. The NFs were prepared by electrospinning using a solution that contains poly(vinyl pyrrolidone) (PVP) and Co(II) and Fe(III) nitrates as metal sources. Carbon paste was prepared by hand mixing GO, CoFe2O4 NFs and graphite. This paste was then packed into the end of a glass tube and a very small magnetic bar was inserted into the tube to be coated with the carbon paste to provide a magnetic field. The MBCPE was used to attract the magnetic nanofibers to the electrode surface. Cyclic voltammetry and differential pulse voltammetry techniques were used to study the electrochemical behavior of rutin on the modified MBCPE at pH 2.5. The electrocatalytic current, best measured at a potential of around 0.5 V (vs. Ag/AgCl), varies with the rutin concentration in two linear ranges, viz. from 0.001-0.1 nM and from 1.0-100 nM, with a 0.94 pM detection limit. The electrode was successfully applied to the determination of rutin in lemon, red apple, lime and orange juices. Graphical abstractSchematic representation of a modified magnetic bar carbon paste electrode for detection of rutin. To achieve the modified electrode, electrospun CoFe2O4 nanofibers, graphene oxide and a very small magnetic bar are packed into the end of a glass tube.
Collapse
Affiliation(s)
- Sepideh Hojat Ansari
- Department of Chemistry, Pardis Campus, University of Guilan, Park-e-Shahr, P.O. Box 4199613776, Rasht, Iran
| | - Majid Arvand
- Department of Chemistry, Pardis Campus, University of Guilan, Park-e-Shahr, P.O. Box 4199613776, Rasht, Iran. .,Electroanalytical Chemistry Laboratory, Faculty of Chemistry, University of Guilan, Namjoo Street, P.O. Box: 1914-41335, Rasht, Iran.
| |
Collapse
|
25
|
Cheng W, Zeng P, Ma C, Peng H, Yang J, Huang J, Zhang M, Cheng F. Electrochemical sensor for sensitive detection of luteolin based on multi-walled carbon nanotubes/poly(3,4-ethylenedioxythiophene)–gold nanocomposites. NEW J CHEM 2020. [DOI: 10.1039/c9nj05241k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemical sensor based on MWCNTs/PEDT–Au nanocomposite modified GCE for electrochemical determination of luteolin was presented.
Collapse
Affiliation(s)
- Wenxue Cheng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials
- Dongguan University of Technology
- Dongguan 523808
- People's Republic of China
| | - Peiyi Zeng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials
- Dongguan University of Technology
- Dongguan 523808
- People's Republic of China
| | - Cenhuai Ma
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials
- Dongguan University of Technology
- Dongguan 523808
- People's Republic of China
| | - Haoming Peng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials
- Dongguan University of Technology
- Dongguan 523808
- People's Republic of China
| | - Jinsha Yang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials
- Dongguan University of Technology
- Dongguan 523808
- People's Republic of China
| | - Jianzhi Huang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Min Zhang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials
- Dongguan University of Technology
- Dongguan 523808
- People's Republic of China
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials
- Dongguan University of Technology
- Dongguan 523808
- People's Republic of China
| |
Collapse
|
26
|
Ochab M, Gęca I, Korolczuk M. Sensitive Simultaneous Determination of Rutin and Folic Acid with the Use of a Solid Lead Electrode by Means of Adsorptive Stripping Voltammetry. ELECTROANAL 2019. [DOI: 10.1002/elan.201900331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Mateusz Ochab
- Faculty of ChemistryMaria Curie Sklodowska University 20-031 Lublin Poland
| | - Iwona Gęca
- Faculty of ChemistryMaria Curie Sklodowska University 20-031 Lublin Poland
| | | |
Collapse
|
27
|
Yalikun N, Mamat X, Li Y, Hu X, Wang P, Hu G. Taraxacum-like Mg-Al-Si@porous carbon nanoclusters for electrochemical rutin detection. Mikrochim Acta 2019; 186:379. [DOI: 10.1007/s00604-019-3369-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/19/2019] [Indexed: 01/12/2023]
|
28
|
Voltammetric simultaneous determination of catechol and hydroquinone using a glassy carbon electrode modified with a ternary hybrid material composed of reduced graphene oxide, magnetite nanoparticles and gold nanoparticles. Mikrochim Acta 2019; 186:177. [DOI: 10.1007/s00604-019-3273-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/20/2019] [Indexed: 01/17/2023]
|