1
|
Habib S, Talhami M, Hassanein A, Mahdi E, Al-Ejji M, Hassan MK, Altaee A, Das P, Hawari AH. Advances in functionalization and conjugation mechanisms of dendrimers with iron oxide magnetic nanoparticles. NANOSCALE 2024; 16:13331-13372. [PMID: 38967017 DOI: 10.1039/d4nr01376j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Iron oxide magnetic nanoparticles (MNPs) are crucial in various areas due to their unique magnetic properties. However, their practical use is often limited by instability and aggregation in aqueous solutions. This review explores the advanced technique of dendrimer functionalization to enhance MNP stability and expand their application potential. Dendrimers, with their symmetric and highly branched structure, effectively stabilize MNPs and provide tailored functional sites for specific applications. We summarize key synthetic modifications, focusing on the impacts of dendrimer size, surface chemistry, and the balance of chemical (e.g., coordination, anchoring) and physical (e.g., electrostatic, hydrophobic) interactions on nanocomposite properties. Current challenges such as dendrimer toxicity, control over dendrimer distribution on MNPs, and the need for biocompatibility are discussed, alongside potential solutions involving advanced characterization techniques. This review highlights significant opportunities in environmental, biomedical, and water treatment applications, stressing the necessity for ongoing research to fully leverage dendrimer-functionalized MNPs. Insights offered here aim to guide further development and application of these promising nanocomposites.
Collapse
Affiliation(s)
- Salma Habib
- Department of Mechanical and Industrial Engineering, Qatar University, 2713 Doha, Qatar
- Department of Civil and Environmental Engineering, College of Engineering, Qatar University, PO Box 2713, Doha, Qatar.
| | - Mohammed Talhami
- Department of Civil and Environmental Engineering, College of Engineering, Qatar University, PO Box 2713, Doha, Qatar.
| | - Amani Hassanein
- Department of Civil and Environmental Engineering, College of Engineering, Qatar University, PO Box 2713, Doha, Qatar.
| | - Elsadig Mahdi
- Department of Mechanical and Industrial Engineering, Qatar University, 2713 Doha, Qatar
| | - Maryam Al-Ejji
- Center for Advanced Materials, Qatar University, PO Box 2713, Doha, Qatar
| | - Mohammad K Hassan
- Center for Advanced Materials, Qatar University, PO Box 2713, Doha, Qatar
| | - Ali Altaee
- School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Probir Das
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Alaa H Hawari
- Department of Civil and Environmental Engineering, College of Engineering, Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
2
|
Leszczyńska D, Hallmann A, Treder N, Bączek T, Roszkowska A. Recent advances in the use of SPME for drug analysis in clinical, toxicological, and forensic medicine studies. Talanta 2024; 270:125613. [PMID: 38159351 DOI: 10.1016/j.talanta.2023.125613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Solid-phase microextraction (SPME) has gained attention as a simple, fast, and non-exhaustive extraction technique, as its unique features enable its use for the extraction of many classes of drugs from biological matrices. This sample-preparation approach consolidates sampling and sample preparation into a single step, in addition to providing analyte preconcentration and sample clean-up. These features have helped SPME become an integral part of several analytical protocols for monitoring drug concentrations in human matrices in clinical, toxicological, and forensic medicine studies. Over the years, researchers have continued to develop the SPME technique, resulting in the introduction of novel sorbents and geometries, which have resulted in improved extraction efficiencies. This review summarizes developments and applications of SPME published between 2016 and 2022, specifically in relation to the analysis of central nervous system drugs, drugs used to treat cardiovascular disorders and bacterial infections, and drugs used in immunosuppressive and anticancer therapies.
Collapse
Affiliation(s)
- Dagmara Leszczyńska
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Gdańsk, 80-211, Poland
| | - Anna Hallmann
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Gdańsk, 80-211, Poland
| | - Natalia Treder
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, 80-416, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, 80-416, Poland
| | - Anna Roszkowska
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, 80-416, Poland.
| |
Collapse
|
3
|
Kechagia A, Manousi N, Kabir A, Furton KG, Zacharis CK. Fabricating a designer capsule phase microextraction platform based on sol-gel Carbowax 20M-zwitterionic ionic liquid composite sorbent for the extraction of lipid-lowering drugs from human urine samples. Mikrochim Acta 2023; 190:428. [PMID: 37796344 PMCID: PMC10556171 DOI: 10.1007/s00604-023-05998-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
A sol-gel Carbowax 20 M/3-[(3-Cholamidopropyl) dimethyl ammonio]-1-propanesulfonate composite sorbent-based capsule phase microextraction device has been fabricated and characterized for the determination of four statins (pravastatin, rosuvastatin, pitavastatin, and atorvastatin) in human urine. The presence of ionizable carboxyl functional groups in statins requires pH adjustment of the sample matrix to ensure that the target molecules are in their protonated form (pH should be 2 units below their pKa values) which not only is cumbersome but also risks unintended contamination of the sample. This challenge was addressed by introducing zwitterionic ionic liquid in addition to neutral, polar Carbowax 20 M polymer in the sol-gel-derived composite sorbent. As such, the composite zwitterionic multi-modal sorbent can simultaneously extract neutral, cationic, and anionic species. This particular attribute of the composite sorbent eliminates the necessity of the matrix pH adjustment and consequently simplifies the overall sample preparation workflow. Various experimental parameters such as the sample amount, extraction time, salt addition, stirring rate, and elution solvent type that may affect the extraction performance of the statins were investigated using a central composite design and the one-parameter-at-a-time approach. The analytes and the internal standard were separated on a C18 column with gradient elution using phosphate buffer (20 mM, pH 3) and acetonitrile as mobile phase. The analytes were detected at 237 nm. The method was validated, and linearity was observed in the range 0.10-2.0 μg mL-1 for all compounds. The method precision was better 9.9% and 10.4% for intra-day and inter-day, respectively, while the relative recoveries were acceptable, ranging between 83.4 and 116% in all cases. Method greenness was assessed using the ComplexGAPI index. Finally, the method's applicability was demonstrated in the determination of the statins in authentic human urine after oral administration of pitavastatin and rosuvastatin-containing tablets.
Collapse
Affiliation(s)
- Argyroula Kechagia
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Natalia Manousi
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, International Forensic Research Institute, Florida International University, Miami, FL, 33131, USA.
| | - Kenneth G Furton
- Department of Chemistry and Biochemistry, International Forensic Research Institute, Florida International University, Miami, FL, 33131, USA
| | - Constantinos K Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
4
|
Khodabakhshi MJ, Ahmad Panahi H, Konoz E, Feizbakhsh A, Kimiagar S. NIR-triggered drug delivery system based on Fe3O4-MoS2 core-shell grafted poly(N-vinylcaprolactam): isotherm and kinetics studies. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1888988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Homayon Ahmad Panahi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Elaheh Konoz
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Feizbakhsh
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Salimeh Kimiagar
- Nano Research Lab (NRL), Department of Physic, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Sadr MS, Heydarinasab A, Panahi HA, Javan RS. Production and characterization of biocompatible nano‐carrier based on
Fe
3
O
4
for magnetically hydroxychloroquine drug delivery. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mahshad Sadat Sadr
- Department of Petroleum and Chemical Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| | - Amir Heydarinasab
- Department of Petroleum and Chemical Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| | - Homayon Ahmad Panahi
- Department of Chemistry, Central Tehran Branch Islamic Azad University Tehran Iran
| | - Raheleh Safaie Javan
- Department of Biology, Varamin‐Pishva Branch Islamic Azad University Varamin Iran
| |
Collapse
|
6
|
Kim SE, Tieu MV, Hwang SY, Lee MH. Magnetic Particles: Their Applications from Sample Preparations to Biosensing Platforms. MICROMACHINES 2020; 11:mi11030302. [PMID: 32183074 PMCID: PMC7142445 DOI: 10.3390/mi11030302] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
The growing interest in magnetic materials as a universal tool has been shown by an increasing number of scientific publications regarding magnetic materials and its various applications. Substantial progress has been recently made on the synthesis of magnetic iron oxide particles in terms of size, chemical composition, and surface chemistry. In addition, surface layers of polymers, silica, biomolecules, etc., on magnetic particles, can be modified to obtain affinity to target molecules. The developed magnetic iron oxide particles have been significantly utilized for diagnostic applications, such as sample preparations and biosensing platforms, leading to the selectivity and sensitivity against target molecules and the ease of use in the sensing systems. For the process of sample preparations, the magnetic particles do assist in target isolation from biological environments, having non-specific molecules and undesired molecules. Moreover, the magnetic particles can be easily applied for various methods of biosensing devices, such as optical, electrochemical, and magnetic phenomena-based methods, and also any methods combined with microfluidic systems. Here we review the utilization of magnetic materials in the isolation/preconcentration of various molecules and cells, and their use in various techniques for diagnostic biosensors that may greatly contribute to future innovation in point-of-care and high-throughput automation systems.
Collapse
Affiliation(s)
- Seong-Eun Kim
- Human IT Convergence Research Center, Korea Electronics Technology Institute, Gyeonggi-do 13509, Korea;
| | - My Van Tieu
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea; (M.V.T.); (S.Y.H.)
| | - Sei Young Hwang
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea; (M.V.T.); (S.Y.H.)
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea; (M.V.T.); (S.Y.H.)
- Correspondence: ; Tel.: +82-2-820-5503; Fax: +82-2-814-2651
| |
Collapse
|
7
|
Cheng J, Zhou J, Wang Z, Zhang M. Quasi-homogeneous catalytic reaction and heterogeneous separation over Pd nanoparticles supported on modified poly(methyl methacrylate) with an upper critical solution temperature. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00844c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A smart hydrogenation catalyst based on modified poly(methyl methacrylate) was prepared and showed excellent catalytic performance.
Collapse
Affiliation(s)
- Jinyu Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Juan Zhou
- Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Zhiqiang Wang
- Tianjin Key Laboratory of Water Environment and Resources
- Tianjin Normal University
- Tianjin
- China
| | - Minghui Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (MOE)
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
8
|
Nitrogen-doped carbon nanodots prepared from polyethylenimine for fluorometric determination of salivary uric acid. Mikrochim Acta 2019; 186:166. [DOI: 10.1007/s00604-019-3277-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/22/2019] [Indexed: 12/15/2022]
|