1
|
Sariga, Varghese A. The Renaissance of Ferrocene-Based Electrocatalysts: Properties, Synthesis Strategies, and Applications. Top Curr Chem (Cham) 2023; 381:32. [PMID: 37910233 DOI: 10.1007/s41061-023-00441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
The fascinating electrochemical properties of the redox-active compound ferrocene have inspired researchers across the globe to develop ferrocene-based electrocatalysts for a wide variety of applications. Advantages including excellent chemical and thermal stability, solubility in organic solvents, a pair of stable redox states, rapid electron transfer, and nontoxic nature improve its utility in various electrochemical applications. The use of ferrocene-based electrocatalysts enables control over the intrinsic properties and electroactive sites at the surface of the electrode to achieve specific electrochemical activities. Ferrocene and its derivatives can function as a potential redox medium that promotes electron transfer rates, thereby enhancing the reaction kinetics and electrochemical responses of the device. The outstanding electrocatalytic activity of ferrocene-based compounds at lower operating potentials enhances the specificity and sensitivity of reactions and also amplifies the response signals. Owing to their versatile redox chemistry and catalytic activities, ferrocene-based electrocatalysts are widely employed in various energy-related systems, molecular machines, and agricultural, biological, medicinal, and sensing applications. This review highlights the importance of ferrocene-based electrocatalysts, with emphasis on their properties, synthesis strategies for obtaining different ferrocene-based compounds, and their electrochemical applications.
Collapse
Affiliation(s)
- Sariga
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India
| | - Anitha Varghese
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India.
| |
Collapse
|
2
|
Liu R, Zhang F, Shi M, Sang Y, Wang X. In vitro selection and optimization of high-affinity aptamer for milk allergen α-lactalbumin and its application in dual-mode detection. Front Nutr 2022; 9:1005230. [PMID: 36267907 PMCID: PMC9577226 DOI: 10.3389/fnut.2022.1005230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Milk is one of the most common sources of protein in people’s daily lives, and it is also recognized by the World Health Organization (WHO) as one of the eight categories of food allergies to human beings. α-lactalbumin (α-La) is the main cause of milk allergy. In this study, a single-stranded DNA aptamer with high binding affinity to α-La were selected using systematic evolution of ligands by exponential enrichment (SELEX) method. Compared with the full-length sequence, the binding affinity of the truncated aptamer LA-1t for α-La was increased six times using fluorescence analysis. Circular dichroism (CD) indicated that the secondary structure of LA-1t contained a typical hairpin structure. Through the docking simulation of LA-1t and α-La, these experimental results were further explained theoretically, and the recognition mechanism was explained. Finally, the colorimetric and fluorescence signal of boron nitride quantum dots anchored to porous CeO2 nanorods (BNQDs/CeO2) were modulated by FAM-labeled LA-1t to achieve highly selective and sensitive determination of α-La. This dual-mode sensing strategy displayed sensitive recognition for α-La in a linear range of 5–4,000 ng/ml with the LOD was 3.32 ng/ml (colorimetry) and 0.71 ng/ml (fluorescence), respectively. Simultaneously, the colorimetry/fluorescence dual-mode sensing strategy was applied for detecting α-La in spiked real samples and demonstrated good stability and reliability.
Collapse
|
3
|
Zhang X, Li G, Liu J, Su Z. Bio-inspired Nanoenzyme Synthesis and Its Application in A Portable Immunoassay for Food Allergy Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14751-14760. [PMID: 34523915 DOI: 10.1021/acs.jafc.1c04309] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanozymes as a cost-effective and robust enzyme mimic have attracted widespread attention in the development of novel analytical methods. Herein, a new nanozyme-enhanced surface-enhanced Raman scattering (SERS) immunoassay platform was successfully developed using a peroxidase-mimicking nanozyme to replace the natural enzymes as a catalytic label of the enzyme-linked immunosorbent assay for the detection of allergy proteins. In this platform, the peroxidase-mimicking nanozymes as a catalytic label could catalyze the oxidation of the Raman-inactive reporter [i.e., leucomalachite green (LMG)] to generate Raman-active malachite green (MG) with H2O2. Moreover, the produced MG Raman signal was further enhanced by the formed Raman "hot spot" through MG-induced gold nanoparticle aggregation, which could be recorded by a portable Raman spectrometer. On this basis, the established nanozyme-enhanced SERS immunoassay showed improved accuracy, high sensitivity, and good selectivity and was used for accurate quantification of α-lactalbumin (α-LA). With this method, α-LA could be detected with a limit of detection as low as 0.01 ng/mL. Moreover, the method was also verified by performing in food samples and showed satisfactory recoveries and high reliability. This study not only provides insight into the use of a nanozyme to establish new analytical methods but also broadens the applications of nanozymes in a food safety assay.
Collapse
Affiliation(s)
- Xianlong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, People's Republic of China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, People's Republic of China
| | - Jianghua Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, People's Republic of China
| | - Zhuoqun Su
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, People's Republic of China
| |
Collapse
|
4
|
Peng Y, Rabin C, Walgama CT, Pollok NE, Smith L, Richards I, Crooks RM. Silver Nanocubes as Electrochemical Labels for Bioassays. ACS Sens 2021; 6:1111-1119. [PMID: 33439628 DOI: 10.1021/acssensors.0c02377] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here, we report on the use of 40 ± 4 nm silver nanocubes (AgNCs) as electrochemical labels in bioassays. The model metalloimmunoassay combines galvanic exchange (GE) and anodic stripping voltammetry (ASV). The results show that a lower limit of detection is achieved by simply changing the shape of the Ag label yielding improved GE with AgNCs when compared to GE with spherical silver nanoparticles (sAgNPs). Specifically, during GE between electrogenerated Au3+ and the Ag labels, a thin shell of Au forms on the surface of the NP. This shell is more porous when GE proceeds on AgNCs compared to sAgNPs, and therefore, more exchange occurs when using AgNCs. ASV results show that the Ag collection efficiency (AgCE%) is increased by up to ∼57% when using AgNCs. When the electrochemical system is fully optimized, the limit of detection is 0.1 pM AgNCs, which is an order of magnitude lower than that of sAgNP labels.
Collapse
Affiliation(s)
- Yi Peng
- Department of Chemistry, The University of Texas at Austin, 100 E. 24th Street, Stop A1590, Austin, Texas 78712-1224, United States
| | - Charlie Rabin
- Department of Chemistry, The University of Texas at Austin, 100 E. 24th Street, Stop A1590, Austin, Texas 78712-1224, United States
| | - Charuksha T. Walgama
- Department of Chemistry, The University of Texas at Austin, 100 E. 24th Street, Stop A1590, Austin, Texas 78712-1224, United States
| | - Nicole E. Pollok
- Department of Chemistry, The University of Texas at Austin, 100 E. 24th Street, Stop A1590, Austin, Texas 78712-1224, United States
| | - Leilani Smith
- Department of Chemistry, The University of Texas at Austin, 100 E. 24th Street, Stop A1590, Austin, Texas 78712-1224, United States
| | - Ian Richards
- Interactives Executive Excellence LLC, Austin, Texas 78733 United States
| | - Richard M. Crooks
- Department of Chemistry, The University of Texas at Austin, 100 E. 24th Street, Stop A1590, Austin, Texas 78712-1224, United States
| |
Collapse
|
5
|
Ahmadi M, Ghoorchian A, Dashtian K, Kamalabadi M, Madrakian T, Afkhami A. Application of magnetic nanomaterials in electroanalytical methods: A review. Talanta 2020; 225:121974. [PMID: 33592722 DOI: 10.1016/j.talanta.2020.121974] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/07/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023]
Abstract
Magnetic nanomaterials (MNMs) have gained high attention in different fields of studies due to their ferromagnetic/superparamagnetic properties and their low toxicity and high biocompatibility. MNMs contain magnetic elements such as iron and nickel in metallic, bimetallic, metal oxide, and mixed metal oxide. In electroanalytical methods, MNMs have been applied as sorbents for sample preparation before the electrochemical detection (sorbent role), as the electrode modifier (catalytic role), and the integration of the above two roles (as both sorbent and catalytic agent). In this paper, the application of MNMs in electroanalytical methods have been classified based on the main role of the nanomaterial and discussed separately. Furthermore, catalytic activities of MNMs in electroanalytical methods such as redox electrocatalytic, nanozymes catalytic (peroxidase, catalase activity, oxidase activity, superoxide dismutase activity), catalyst gate, and nanocontainer have been discussed.
Collapse
Affiliation(s)
- Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran.
| | | | | | | | | | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
6
|
A homogeneous magnetic bead-based impedance immunosensor for highly sensitive detection of Escherichia coli O157:H7. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Dong J, He L, Wang Y, Yu F, Yu S, Liu L, Wang J, Tian Y, Qu L, Han R, Wang Z, Wu Y. A highly sensitive colorimetric aptasensor for the detection of the vascular endothelial growth factor in human serum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 226:117622. [PMID: 31606672 DOI: 10.1016/j.saa.2019.117622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/23/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
Early detection of cancer is of great significance for disease prevention and diagnosis. However, the levels of most cancer markers are quite low in the early stages of disease, so it is urgent to develop a highly sensitive detection method. In this study, a label-free and highly sensitive colorimetric strategy was developed for the detection of the vascular endothelial growth factor165 (VEGF165) in human serum. First, a convenient biosensor was constructed by immobilizing VEGF165 on a microplate, where aptamers bound with VEGF165 to form a complex. Then, streptavidin labeled-horseradish peroxidase (HRP-SA) combined with the complex via the interaction between streptavidin and biotin, thus catalyzing the 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2 system to produce colored products. In the presence of target, immobilized VEGF165 and target competitively bound with the aptamers, resulting in a reduction of the colorimetric signal. Moreover, the optical density (OD) signal decreased with the increase of target concentration. The strategy showed a broad linear range (0.1-100 ng/mL) and a rather low detection limit of 10 pg/mL with good precision and selectivity. Further, the proposed method was successfully applied in detecting VEGF165 in human serum. The detection results of serum samples showed that the proposed assay had a high correlation with CLEIA kits (r = 0.971, P = 0.001). It has potential for application in clinical research and diagnosis.
Collapse
Affiliation(s)
- Jiajia Dong
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China; College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Leiliang He
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yilin Wang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Fei Yu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Lie Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jia Wang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongmei Tian
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Lingbo Qu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Runping Han
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Ziling Wang
- Henan Provincial Chest Hospital, Zhengzhou, 450001, China.
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China; The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, 450001, China.
| |
Collapse
|
8
|
Yang H, Xu W, Zhou Y. Signal amplification in immunoassays by using noble metal nanoparticles: a review. Mikrochim Acta 2019; 186:859. [DOI: 10.1007/s00604-019-3904-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022]
|
9
|
Metal-ion-induced DNAzyme on magnetic beads for detection of lead(II) by using rolling circle amplification, glucose oxidase, and readout of pH changes. Mikrochim Acta 2019; 186:318. [DOI: 10.1007/s00604-019-3454-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/15/2019] [Indexed: 01/19/2023]
|
10
|
Pastucha M, Farka Z, Lacina K, Mikušová Z, Skládal P. Magnetic nanoparticles for smart electrochemical immunoassays: a review on recent developments. Mikrochim Acta 2019; 186:312. [PMID: 31037494 DOI: 10.1007/s00604-019-3410-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023]
Abstract
This review (with 129 refs) summarizes the progress in electrochemical immunoassays combined with magnetic particles that was made in the past 5 years. The specifity of antibodies linked to electrochemical transduction (by amperometry, voltammetry, impedimetry or electrochemiluminescence) gains further attractive features by introducing magnetic nanoparticles (MNPs). This enables fairly easy preconcentration of analytes, minimizes matrix effects, and introduces an appropriate label. Following an introduction into the fundamentals of electrochemical immunoassays and on nanomaterials for respective uses, a large chapter addresses method for magnetic capture and preconcentration of analytes. A next chapter discusses commonly used labels such as dots, enzymes, metal and metal oxide nanoparticles and combined clusters. The large field of hybrid nanomaterials for use in such immunoassays is discussed next, with a focus on MNPs composites with various kinds of graphene variants, polydopamine, noble metal nanoparticles or nanotubes. Typical applications address clinical markers (mainly blood and urine parameters), diagnosis of cancer (markers and cells), detection of pathogens (with subsections on viruses and bacteria), and environmental and food contaminants as toxic agents and pesticides. A concluding section summarizes the present status, current challenges, and highlights future trends. Graphical abstract Magnetic nanoparticles (MNP) with antibodies (Ab) capture and preconcentrate analyte from sample (a) and afterwards become magnetically (b) or immunospecifically (c) bound at an electrode. Signal either increases due to the presence of alabel (b) or decreases as the redox probe is blocked (c).
Collapse
Affiliation(s)
- Matěj Pastucha
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Zdeněk Farka
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Karel Lacina
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Zuzana Mikušová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|