1
|
Fdez-Sanromán A, Pazos M, Sanromán MA, Rosales E. Heterogeneous electro-Fenton system using Fe-MOF as catalyst and electrocatalyst for degradation of pharmaceuticals. CHEMOSPHERE 2023; 340:139942. [PMID: 37634590 DOI: 10.1016/j.chemosphere.2023.139942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
In recent years, heterogeneous electro-Fenton processes have gained considerable attention as an alternative to homogeneous processes. In this context, the aim of this study is the use of a commercial iron metal-organic framework (Fe-MOF), Basolite® F-300, as a base material for the design of a heterogeneous electro-Fenton treatment system for the removal of antipyrine. Initially, the catalyst was applied as powder in aqueous solution and three key parameters of the electro-Fenton process (pH, Fe-MOF concentration and current density) were evaluated and optimized by a Central Composite Design Face Centred (CCD-FC) using antipyrine removal and energy consumption as response functions. Near complete antipyrine removal (94%) was achieved under optimal conditions: pH 3, Fe-MOF 157.78 mg/L and current density 6.67 mA/cm2, obtaining an energy consumption of 0.29 W·h per mg of antipyrine removed. Later, two electrocatalysts (Fe-MOF functionalized cathodes), prepared by different Fe-MOF immobilisation approaches (composite of carbon black/polytetrafluoroethylene or by electrospinning on Ni foam), were synthesized. Their characterisation showed notable Fe-MOF incorporation into the material and favourable properties as electrocatalysts. Both Fe-MOF functionalized cathodes were evaluated in the removal of antipyrine at different pH (acidic and natural) and current density (27.78 and 55.56 mA/cm2), achieving in the best conditions removal levels around 80% in 1 h without any operational problems. In addition, several intermediates generated during the treatment were identified and their toxicity estimated. According to the obtained results, the degradation compounds have less toxicity than the parent compounds, confirming the effectiveness of the treatment.
Collapse
Affiliation(s)
- Antía Fdez-Sanromán
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus Lagoas-Marcosende, 36310, Vigo, Spain.
| | - Marta Pazos
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus Lagoas-Marcosende, 36310, Vigo, Spain.
| | - M Angeles Sanromán
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus Lagoas-Marcosende, 36310, Vigo, Spain.
| | - Emilio Rosales
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus Lagoas-Marcosende, 36310, Vigo, Spain.
| |
Collapse
|
2
|
Shi X, Xie Y, Chen L, Lu J, Zhang L, Sun D. Combining quasi-ZIF-67 hybrid nanozyme and G-quadruplex/hemin DNAzyme for highly sensitive electrochemical sensing. Bioelectrochemistry 2023; 149:108278. [PMID: 36195024 DOI: 10.1016/j.bioelechem.2022.108278] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 12/08/2022]
Abstract
Zeolitic imidazolate frameworks (ZIFs), a famous subfamily of metal-organic frameworks (MOFs), are considered promising electrocatalysts. Herein, ZIF-67 was selected as an electrocatalyst for designing electrochemical sensors due to having the best electrocatalytic activity in ZIFs. To overcome the insufficient electrocatalytic activity of ZIFs, ZIF-67 derivatives (QZIF-67-X, where X represents calcination time) were obtained by calcining at 250 °C for a certain time. The porous structure of the precursor in QZIF-67-X is maintained, exposing more active centers. QZIF-67-X could accelerate electron transfer and lead to improve the electrocatalytic performance. Moreover, QZIF-67-2 was chosen as an Au nanoparticle-supported nanocarrier to further bind G-quadruplex/hemin DNAzymes with strong catalytic activity due to the best supporting activity of QZIF-67-2 among QZIF-67-X. The synergistic catalysis of QZIF-67-2 and G-quadruplex/hemin DNAzymes effectively amplified the reduction current signal of H2O2. The linear range of the prepared electrochemical sensor was 2 μM-65 mM, and the detection limit was 1.2 μM. Moreover, the real-time detection of H2O2 from HepG2 cells was achieved by the sensor, providing a novel technique for efficient anticancer drug evaluation. These results suggested that QZIF-67 can be utilized as an efficient electrocatalyst for improving the sensitivity of sensors.
Collapse
Affiliation(s)
- Xianhua Shi
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510699, Guangdong, China
| | - Yixuan Xie
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Linxi Chen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Jing Lu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China
| | - Luyong Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China.
| | - Duanping Sun
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510699, Guangdong, China.
| |
Collapse
|
3
|
Hsu LF, Venkatesh K, Karuppiah C, Ramaraj SK, Yang CC. Incorporation of ZIF-67 derived Co-N/C core-shell nanoparticles on functionalized MWCNT as a highly efficient electrocatalyst for nonenzymatic H2O2 sensor. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Phuakkhaw D, Amonpattaratkit P, Klysubun W, Saiwattanasuk P, Midpanon S, Porntheeraphat S, Klamchuen A, Wongchaisuwat A, Sagawa T, Viravathana P. Cu‐ and Fe‐Incorporated Manganese Oxides (Mn
x
O
y
) as Cathodic Catalysts for Hydrogen Peroxide Reduction (HPR) and Oxygen Reduction (OR) in Micro‐direct Methanol Fuel Cells. ChemElectroChem 2022. [DOI: 10.1002/celc.202200120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Duangkamon Phuakkhaw
- Department of Chemistry Kasetsart University 50 Ngamwongwan Rd, Chatuchak 10900 Bangkok Thailand
- Center of Excellence on Petrochemical and Materials Technology 7th floor Chulalongkorn University Research Building, Soi Chula 12, Phayathai Rd 10330 Bangkok Thailand
| | - Penphitcha Amonpattaratkit
- Synchrotron Light Research Institute 111 University Avenue, Muang District 30000 Nakhon Ratchasima Thailand
| | - Wantana Klysubun
- Synchrotron Light Research Institute 111 University Avenue, Muang District 30000 Nakhon Ratchasima Thailand
| | - Patraporn Saiwattanasuk
- Department of Chemistry Kasetsart University 50 Ngamwongwan Rd, Chatuchak 10900 Bangkok Thailand
| | - Supatta Midpanon
- Department of Chemistry Kasetsart University 50 Ngamwongwan Rd, Chatuchak 10900 Bangkok Thailand
| | - Supanit Porntheeraphat
- National Electronics and Computer Technology Center National Science and Technology Development Agency Phahonyothin Rd, Khlong Nueng 12120 Klong Luang Pathum Thani Thailand
| | - Annop Klamchuen
- National Nanotechnology Center National Science and Technology Development Agency Phahonyothin Rd, Khlong Nueng 12120 Klong Luang Pathum Thani Thailand
| | - Atchana Wongchaisuwat
- Department of Chemistry Kasetsart University 50 Ngamwongwan Rd, Chatuchak 10900 Bangkok Thailand
| | - Takashi Sagawa
- Quantum Energy Processes Department of Fundamental Energy Science Graduate School of Energy Science Kyoto University Yoshida-Honmachi, Sakyo-ku 606-8501 Kyoto Japan
| | - Pinsuda Viravathana
- Department of Chemistry Kasetsart University 50 Ngamwongwan Rd, Chatuchak 10900 Bangkok Thailand
- Center of Excellence on Petrochemical and Materials Technology 7th floor Chulalongkorn University Research Building, Soi Chula 12, Phayathai Rd 10330 Bangkok Thailand
- Center of Advanced Studies in Tropical Natural Resources Kasetsart University 50 Ngamwongwan Rd, Chatuchak 10900 Bangkok Thailand
| |
Collapse
|
5
|
Guo X, Lin C, Zhang M, Duan X, Dong X, Sun D, Pan J, You T. 2D/3D Copper-Based Metal-Organic Frameworks for Electrochemical Detection of Hydrogen Peroxide. Front Chem 2021; 9:743637. [PMID: 34692641 PMCID: PMC8530376 DOI: 10.3389/fchem.2021.743637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/03/2021] [Indexed: 11/25/2022] Open
Abstract
Metal-organic frameworks (MOFs) have been extensively used as modified materials of electrochemical sensors in the food industry and agricultural system. In this work, two kinds of copper-based MOFs (Cu-MOFs) with a two dimensional (2D) sheet-like structure and three dimensional (3D) octahedral structure for H2O2 detection were synthesized and compared. The synthesized 2D and 3D Cu-MOFs were modified on the glassy carbon electrode to fabricate electrochemical sensors, respectively. The sensor with 3D Cu-MOF modification (HKUST-1/GCE) presented better electrocatalytic performance than the 2D Cu-MOF modified sensor in H2O2 reduction. Under optimal conditions, the prepared sensor displayed two wide linear ranges of 2 μM-3 mM and 3-25 mM and a low detection limit of 0.68 μM. In addition, the 3D Cu-MOF sensor exhibited good selectivity and stability. Furthermore, the prepared HKUST-1/GCE was used for the detection of H2O2 in milk samples with a high recovery rate, indicating great potential and applicability for the detection of substances in food samples. This work provides a convenient, practical, and low-cost route for analysis and extends the application range of MOFs in the food industry, agricultural and environmental systems, and even in the medical field.
Collapse
Affiliation(s)
- Xiangjian Guo
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chuyan Lin
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Minjun Zhang
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xuewei Duan
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiangru Dong
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Duanping Sun
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianbin Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Tianhui You
- School of Nursing, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
6
|
Li Z, Yuan Y, Wu H, Li X, Yuan M, Wang H, Wu X, Liu S, Zheng X, Kim M, Zheng H, Rehman S, Jiang G, Fu W, Jiang J. Investigation of MOF-derived humidity-proof hierarchical porous carbon frameworks as highly-selective toluene absorbents and sensing materials. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125034. [PMID: 33858080 DOI: 10.1016/j.jhazmat.2020.125034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Carbon frameworks (CFs) derived from metal-organic frameworks (MOFs) have been produced as adsorbents of toluene. To further obtain optimum hierarchical porous carbon structure of CFs, different treatment temperatures were applied to a typical kind of MOFs (ZIF-8). The adsorption capacity of the toluene of hierarchical porous CFs obtained from ZIF-8 under 1100 °C (CF-1100, adsorption capacity of 208.5 mg/g) was higher than that of other carbonization temperature and MOFs. Impressively, the adsorbent CF-1100 also exhibited strong hydrophobicity, low desorption temperature, and good selectivity to toluene. The adsorption capacity decreased by only 10.4% under wet condition compared with the dry condition, standing on the top of the recently reported adsorbents. The impressive adsorption performance of CF-1100 is attributed to the larger specific surface area (1024 m2/g) and pore volume (0.497 cm3/g), newly generated micropores (pore width is 0.6-0.8 nm) and mesopores (pore width above 10 nm), and carbonaceous structure with higher degree of graphitization. Based on the adequate adsorption performance, CF-1100 coated quartz crystal microbalances as sensor also showed a high sensitivity of 0.4004 Hz/ppm and small relative standard deviations of 1.0745% for toluene sensing. This contribution provides a foundation for optimizing potential adsorbents and sensing materials for air pollution abatement.
Collapse
Affiliation(s)
- Zehui Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yi Yuan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Hao Wu
- Division of Advanced Manufacturing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Xinghui Li
- Division of Advanced Manufacturing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Menglei Yuan
- Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Huaizhang Wang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Xiaoxue Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Shuai Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xianming Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Mingjun Kim
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Haoyun Zheng
- Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Sadia Rehman
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Guangya Jiang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Wangyang Fu
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Jingkun Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
7
|
Li Z, Liu R, Tang C, Wang Z, Chen X, Jiang Y, Wang C, Yuan Y, Wang W, Wang D, Chen S, Zhang X, Zhang Q, Jiang J. Cobalt Nanoparticles and Atomic Sites in Nitrogen-Doped Carbon Frameworks for Highly Sensitive Sensing of Hydrogen Peroxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1902860. [PMID: 31468709 DOI: 10.1002/smll.201902860] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/05/2019] [Indexed: 06/10/2023]
Abstract
In situ monitoring of hydrogen peroxide (H2 O2 ) during its production process is needed. Here, an electrochemical H2 O2 sensor with a wide linear current response range (concentration: 5 × 10-8 to 5 × 10-2 m), a low detection limit (32.4 × 10-9 m), and a high sensitivity (568.47 µA mm-1 cm-2 ) is developed. The electrocatalyst of the sensor consists of cobalt nanoparticles and atomic Co-Nx moieties anchored on nitrogen doped carbon nanotube arrays (Co-N/CNT), which is obtained through the pyrolysis of the sandwich-like urea@ZIF-67 complex. More cobalt nanoparticles and atomic Co-Nx as active sites are exposed during pyrolysis, contributing to higher electrocatalytic activity. Moreover, a portable screen-printed electrode sensor is constructed and demonstrated for rapidly detecting (cost ≈40 s) H2 O2 produced in microbial fuel cells with only 50 µL solution. Both the synthesis strategy and sensor design can be applied to other energy and environmental fields.
Collapse
Affiliation(s)
- Zehui Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Rongji Liu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Cheng Tang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhuoya Wang
- School of Chemical & Environmental Engineering, China University of Mining & Technology, Beijing, Beijing, 100083, P. R. China
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuheng Jiang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Chizhong Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Yi Yuan
- School of Chemical & Environmental Engineering, China University of Mining & Technology, Beijing, Beijing, 100083, P. R. China
| | - Wenbo Wang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dongbin Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuning Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Jingkun Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
8
|
Zeolitic imidazolate frameworks for use in electrochemical and optical chemical sensing and biosensing: a review. Mikrochim Acta 2020; 187:234. [PMID: 32180011 DOI: 10.1007/s00604-020-4173-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/18/2020] [Indexed: 12/27/2022]
Abstract
This review (with 145 refs.) summarizes the progress that has been made in the use of zeolitic imidazolate frameworks in chemical sensing and biosensing. Zeolitic imidazolate frameworks (ZIFs) are a type of porous material with zeolite topological structure that combine the advantages of zeolite and traditional metal-organic frameworks. Owing to the structural flexibility of ZIFs, their pore sizes and surface functionalization can be reasonably designed. Following an introduction into the field of metal-organic frameworks and the zeolitic imidazolate framework (ZIF) subclass, a first large section covers the various kinds and properties of ZIFs. The next large section covers electrochemical sensors and assays (with subsections on methods for gases, electrochemiluminescence, electrochemical biomolecules). This is followed by main sections on ZIF-based colorimetric and luminescent sensors, with subsections on sensors for metal ions and anions, for gases, and for organic biomolecules. The last section covers SERS-based assays. Several tables are presented that give an overview on the wealth of methods and materials. A concluding section summarizes the current status, addresses current challenges, and gives an outlook on potential future trends. Graphical abstract In recent years, ZIFs and their composites have been widely used as probes in chemical sensing, and these probes have shown great advantages over other materials. This review describes the current progress on ZIFs toward electrochemical, luminescence, colorimetric, and SERS-based sensing applications, highlighting the different strategies for designing ZIFs and their composites and potential challenges in this field.
Collapse
|
9
|
Fazli G, Esmaeilzadeh Bahabadi S, Adlnasab L, Ahmar H. A glassy carbon electrode modified with a nanocomposite prepared from Pd/Al layered double hydroxide and carboxymethyl cellulose for voltammetric sensing of hydrogen peroxide. Mikrochim Acta 2019; 186:821. [PMID: 31749054 DOI: 10.1007/s00604-019-3967-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 10/19/2019] [Indexed: 12/20/2022]
Abstract
A Pd/Al layered double hydroxide/carboxymethyl cellulose nanocomposite (CMC@Pd/Al-LDH) was fabricated using carboxymethyl cellulose as a green substrate via co-precipitation method. The synthesized nanocomposite was characterized using different methods such as scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray powder diffraction, transmission electron microscopy, and electrochemical techniques. A glassy carbon electrode (GCE) was then modified with the suspended composite to obtain an electrochemical sensor for hydrogen peroxide (H2O2). The voltammetric (cathodic) current of the modified GCE was measured at -380 mV (vs. Ag/AgCl), at the scan rate of 50 mV.s-1. Results show a linear dynamic range of 1 to 120 μM, and a 0.3 µM limit of detection (at S/N = 3). Intraday and interday relative standard deviations are in the ranges of 4.9-5.4% and 6.8-7.3%, respectively. The sensor was applied for the determination of H2O2 in basil extracts, milk, and spiked river water samples. The recoveries are between 96.60 and 102.30%. Graphical abstractA Pd/Al layered double hydroxide/carboxymethyl cellulose nanocomposite (CMC@Pd/Al-LDH) was fabricated via co-precipitation method and was characterized using scanning electron microscopy, Energy-dispersive X-ray spectroscopy, X-ray powder diffraction, transmission electron microscopy and electrochemical techniques. CMC@Pd/Al-LDH was used to fabricate H2O2 electrochemical sensor.
Collapse
Affiliation(s)
- Gozal Fazli
- Department of Biology, Faculty of Science, University of Zabol, P.O. Box, 98615-538, Zabol, Iran
| | | | - Laleh Adlnasab
- Department of Chemistry, Chemistry and Petrochemistry Research Center, Standard Research Institute, P.O. Box, 31745-139, Karaj, Iran
| | - Hamid Ahmar
- Department of Chemistry, Faculty of Science, University of Zabol, P.O. Box, 98615-538, Zabol, Iran
| |
Collapse
|
10
|
Manickam P, Vashist A, Madhu S, Sadasivam M, Sakthivel A, Kaushik A, Nair M. Gold nanocubes embedded biocompatible hybrid hydrogels for electrochemical detection of H 2O 2. Bioelectrochemistry 2019; 131:107373. [PMID: 31525638 DOI: 10.1016/j.bioelechem.2019.107373] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 10/26/2022]
Abstract
Smart electrochemical biosensors have emerged as a promising alternative analytical diagnostic tool in recent clinical practice. However, improvement in the biocompatibility and electrical conductivity of the biosensor matrix and the immobilization of various bioactive molecules such as enzymes still remain challenging. The present research reports the synthesis of a biocompatible hydrogel network and its integration with gold nanocubes (AuNCs) for developing a novel biosensor with improved functionality. The interpenetrating hydrogel network consist of biopolymers developed using graft co-polymerization of β-cyclodextrin (β-CD) and chitosan (CS). The novelty of this work is in integrating the CS-g-β-CD hydrogel network with conductive AuNCs for improving hydrogel conductivity, biosensor sensitivity and use of the material for a biocompatible sensor. The present protocol advances the state of the art for the utilization of biopolymeric hydrogels system in synergy with an enzymatic biosensing protocol for exclusively detecting hydrogen peroxide (H2O2). Immobilization of the mitochondrial protein, cytochrome c (cyt c) into the hydrogel nanocomposite matrix was performed via thiol cross-linking. This organic-inorganic hybrid nanocomposite hydrogel matrix exhibited high biocompatibility (RAW 264.7 and N2a cell lines), improved electrical conductivity to attain high sensitivity (1.2 mA mM-1 cm-2) and a low detection limit (15 × 10-9 M) for H2O2.
Collapse
Affiliation(s)
- Pandiaraj Manickam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630 003, Tamil Nadu, India.
| | - Arti Vashist
- Department of Immunology & Nano-Medicine, Institute of NeuroImmune Pharmacology, Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Sekar Madhu
- Department of Nanoscience & Technology, Bharathiar University, Coimbatore 641 046, India
| | - Mohanraj Sadasivam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630 003, Tamil Nadu, India
| | - Arunkumar Sakthivel
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630 003, Tamil Nadu, India; Academy of Scientific and Innovative Research, Ghaziabad 201 002, Uttar Pradesh, India
| | - Ajeet Kaushik
- Department of Natural Sciences, Division of Sciences, Art & Mathematics, Florida Polytechnic University, Lakeland, FL 33805, USA
| | - Madhavan Nair
- Department of Immunology & Nano-Medicine, Institute of NeuroImmune Pharmacology, Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
11
|
Chen H, Wu X, Zhao R, Zheng Z, Yuan Q, Dong Z, Gan W. Preparation of reduced graphite oxide loaded with cobalt(II) and nitrogen co-doped carbon polyhedrons from a metal-organic framework (type ZIF-67), and its application to electrochemical determination of metronidazole. Mikrochim Acta 2019; 186:623. [PMID: 31414250 DOI: 10.1007/s00604-019-3737-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/02/2019] [Indexed: 01/14/2023]
Abstract
The integration of derivatives of granular metal-organic frameworks (MOFs) and an electrically conductive carbon substrate is an effective way to circumvent the deficiency of powdered pristine MOFs or MOF-derived carbon in practical application. The authors describe the use of graphite oxide (GO) as a substrate for in-situ assembly with the zeolitic imidazole framework ZIF-67. The GO and ZIF-67 composites were converted, via pyrolysis, into reduced graphite oxide loaded with Co/N-co-doped carbon polyhedrons (ZIF-67C@rGO). By using various amounts of GO, a series of ZIF-67C@rGO-x with different fractions of GO were synthesized and utilized as electrode modifiers for the detection of the antibiotic metronidazole (MNZ). The results revealed that the ZIF-67C@rGO-0.06 display best sensing performance. This is likely to be due to its hierarchically open pores, abundant active sites and good electrical conductivity. The sensor, best operated near a working potential around -0.6 V (vs. SCE), has a linear response in the 0.5 to 1000 μM MNZ concentration range and a 0.05 μM detection limit. The sensor was applied to the analysis of pharmaceutical samples where it showed excellent selectivity, good repeatability and satisfying recoveries. Graphical abstract Schematic representation of preparation and application of ZIF-67C@rGO-x.
Collapse
Affiliation(s)
- Han Chen
- State Key Laboratory of Advanced Welding and Joining, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Xingxing Wu
- State Key Laboratory of Advanced Welding and Joining, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Rui Zhao
- State Key Laboratory of Advanced Welding and Joining, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Zhou Zheng
- State Key Laboratory of Advanced Welding and Joining, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Qunhui Yuan
- State Key Laboratory of Advanced Welding and Joining, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Zhijun Dong
- Institute of Technology for Marine Civil Engineering, Shenzhen Institute of Information Technology, Shenzhen, 518172, China.
| | - Wei Gan
- State Key Laboratory of Advanced Welding and Joining, and School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| |
Collapse
|