1
|
Abidli I, Bououdina M, Latrous L, Megriche A. Electrochemical sensing of caffeic acid on natural biomass-pyrrole-functionalized magnetic biochar (PFMB) as promising SPE material. Mikrochim Acta 2025; 192:239. [PMID: 40102308 DOI: 10.1007/s00604-025-07087-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
A peanut shell-modified screen-printed carbon electrode (SPE) was developed for the sensing of caffeic acid (CA) in saliva samples using cheap miniaturized analyzer composed of a laptop and an electrochemical workstation. Peanut shells, sourced from abundant biomass residues, were used to fabricate magnetic biochar (MB) and pyrrole-functionalized magnetic biochar (PFMB) with varying pyrrole/Fe ratios through a hydrothermal process. The surface morphology and electrochemical properties of the synthesized PFMB material were analyzed using XRD, FTIR, Raman, SEM, VSM, cyclic voltammetry, and differential pulse voltammetry techniques. The PFMB-modified SPE displayed excellent electrocatalytic response towards CA in a wide linear range from 10 to 600 μM with a low limit of detection of 0.08 μM. The enhanced electrocatalytic response could be ascribed to the synergistic effect of pyrrole-functionalized biochar and Fe3O4 on the newly designed probe. Moreover, the fabricated sensor was successfully utilized for real-time detection of CA in various samples. Quantum chemical modeling was performed to confirm the relevant findings to clarify the structure-activity relationship of CA adsorption on biochar.
Collapse
Affiliation(s)
- Imen Abidli
- Laboratoire de Chimie Minérale Appliquée (LR19ES02), Faculté Des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire El Manar I, 2092, Tunis, Tunisia
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, Saudi Arabia
| | - Latifa Latrous
- Laboratoire de Chimie Minérale Appliquée (LR19ES02), Faculté Des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire El Manar I, 2092, Tunis, Tunisia.
- Institut Préparatoire Aux Etudes d'Ingénieurs d'El Manar, B.P.244 El Manar II, 2092, Tunis, Tunisia.
| | - Adel Megriche
- Laboratoire de Chimie Minérale Appliquée (LR19ES02), Faculté Des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire El Manar I, 2092, Tunis, Tunisia
| |
Collapse
|
2
|
Li Y, Yang Y, Huang Y, Li J, Zhao P, Fei J, Xie Y. An ultrasensitive dietary caffeic acid electrochemical sensor based on Pd-Ru bimetal catalyst doped nano sponge-like carbon. Food Chem 2023; 425:136484. [PMID: 37295208 DOI: 10.1016/j.foodchem.2023.136484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/11/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Caffeic acid (CA) is widely present in the human daily diet, and a reliable CA detection method is beneficial to food safety. Herein, we constructed a CA electrochemical sensor employing a glassy carbon electrode (GCE) which was modified by the bimetallic Pd-Ru nanoparticles decorated N-doped spongy porous carbon obtained by pyrolysis of the energetic metal-organic framework (MET). The high-energy bond N-NN in MET explodes to form N-doped sponge-like carbon materials (N-SCs) with porous structures, boosting the adsorptive capacity for CA. The addition of Pd-Ru bimetal improves the electrochemical sensitivity. The linear range of the PdRu/N-SCs/GCE sensor is 1 nM-100 nM and 100 nM-15 μM, with a low detection limit (LOD) of 0.19 nM. It has a high sensitivity (55 μA/μM) and repeatability. The PdRu/N-SCs/GCE sensor has been used to detect CA in actual samples of red wine, strawberries, and blueberries, providing a novel approach for CA detection in food analysis.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Yaqi Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Yutian Huang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Jiejun Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, People's Republic of China.
| | - Yixi Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China; Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan 411105, People's Republic of China.
| |
Collapse
|
3
|
Urçuk A, Yıldız C, Eskiköy Bayraktepe D, Yazan Z. Highly sensitive and disposable electrochemical nano sensor for simultaneous analysis of caffeic acid and uric acid based on halloysite nanotubes and magnetite nanoparticles. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Bounegru AV, Apetrei C. Simultaneous Determination of Caffeic Acid and Ferulic Acid Using a Carbon Nanofiber-Based Screen-Printed Sensor. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22134689. [PMID: 35808187 PMCID: PMC9268774 DOI: 10.3390/s22134689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 05/06/2023]
Abstract
This work aims to achieve the simultaneous qualitative and quantitative determination of two hydroxycinnamic acids (ferulic acid and caffeic acid) from standard solutions and from a phyto-homeopathic product using a carbon nanofiber-based screen-printed sensor (CNF/SPE). The two compounds are mentioned in the manufacturer's specifications but without indicating their concentrations. The stability and reproducibility of the CNF/SPE were found to be effective and the sensitivity was high for both caffeic acid-CA (limit of detection 2.39 × 10-7 M) and ferrulic acid-FA (limit of detection 2.33 × 10-7 M). The antioxidant capacity of the compounds in the analyzed product was also determined by the DPPH (2,2-diphenyl-1-picrylhydrazyl) method. The electrochemical method was efficient and less expensive than other analytical methods; therefore, its use can be extended for the detection of these phenolic compounds in various dietary supplements or pharmaceutical products.
Collapse
|
5
|
Sekar S, Huijun J, Liuzhu Z, Jin C, Lee S, Kim DY, Manikandan R. Copper phthalocyanine conjugated graphitic carbon nitride nanosheets as an efficient electrocatalyst for simultaneous detection of natural antioxidants. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Beaver K, Dantanarayana A, Minteer SD. Materials Approaches for Improving Electrochemical Sensor Performance. J Phys Chem B 2021; 125:11820-11834. [PMID: 34677956 DOI: 10.1021/acs.jpcb.1c07063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Electrochemical sensors have emerged as important diagnostic tools in recent years, due to their simplicity and ease of use. Compared to instrumental analysis methods that use complicated experimental and data analysis techniques─such as mass spectrometry, nuclear magnetic resonance (NMR), spectrophotometric methods, and chromatography─electrochemical sensors show promise for use in a wide range of real-time and in situ applications such as pharmaceutical testing, environmental monitoring, and medical diagnostics. In order to identify analytes in complex and/or biological samples, materials used for both the electrode materials and the chemically selective layer have been evolving throughout the years for optimizing the analytical performance of electrochemical sensors to increase sensitivity, selectivity and linear range. In this Perspective, attention will be focused on different types of materials that have been used for electrochemical sensing, including new combinations of well-studied materials as well as novel strategies to enhance the performance of sensing devices. The Perspective will also discuss existing challenges in the field and future strategies for addressing those challenges.
Collapse
Affiliation(s)
- Kevin Beaver
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Ashwini Dantanarayana
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
7
|
Sundaresan P, Fu CC, Liu SH, Juang RS. Facile synthesis of chitosan-carbon nanofiber composite supported copper nanoparticles for electrochemical sensing of carbendazim. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Shamagsumova R, Rogov A, Shurpik D, Stoikov I, Evtugyn G. Acetylcholinesterase Biosensor Based on Reduced Graphene Oxide – Carbon Black Composite for Determination of Reversible Inhibitors. ELECTROANAL 2021. [DOI: 10.1002/elan.202100385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- R. Shamagsumova
- A.M. Butlerov' Chemistry Institute of Kazan Federal University 18 Kremlevskaya street Kazan 420008 Russian Federation
| | - A. Rogov
- Interdisciplinary Center of Analytical Microscopy of Kazan Federal University 18 Kremlevskaya Street Kazan 420008 Russian Federation
| | - D. Shurpik
- A.M. Butlerov' Chemistry Institute of Kazan Federal University 18 Kremlevskaya street Kazan 420008 Russian Federation
| | - I. Stoikov
- A.M. Butlerov' Chemistry Institute of Kazan Federal University 18 Kremlevskaya street Kazan 420008 Russian Federation
| | - G. Evtugyn
- A.M. Butlerov' Chemistry Institute of Kazan Federal University 18 Kremlevskaya street Kazan 420008 Russian Federation
- Analytical Chemistry Department of Chemical Technology Institute of Ural Federal University 19 Mira Street Ekaterinburg 620002 Russian Federation
| |
Collapse
|
9
|
Baytak AK, Aslanoglu M. A comparison study of adsorptive transfer voltammetry and solution phase voltammetry for the determination of caffeic acid. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
10
|
Pradela-Filho LA, Noviana E, Araújo DAG, Takeuchi RM, Santos AL, Henry CS. Rapid Analysis in Continuous-Flow Electrochemical Paper-Based Analytical Devices. ACS Sens 2020; 5:274-281. [PMID: 31898461 DOI: 10.1021/acssensors.9b02298] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A simple and low-cost continuous-flow (CF) electrochemical paper-based analytical device (ePAD) coupled with thermoplastic electrodes (TPEs) was developed. The fast, continuous flow combined with flow injection analysis was made possible by adding two inlet reservoirs to the same paper-based hollow channel flowing over detection electrodes, terminating in a fan-shaped pumping reservoir. The upstream inlet reservoir was filled with buffer and provided constant flow through the device. Sample injections were performed by adding 2 μL of the sample to the downstream sample inlet. Differences in flow resistance resulted in sample plugs displacing buffer as the solution flowed over the working electrodes. The electrodes were fabricated by mixing carbon black and polycaprolactone (50% w/w). CF-TPE-ePADs were characterized with chronoamperometry using ferrocenylmethyl trimethylammonium as the electrochemical probe. Optimized flow rates and injection volumes gave analysis times roughly an order of magnitude faster than those of previously reported flow injection analysis ePADs. To demonstrate applicability, the CF-TPE-ePADs were used to quantify caffeic acid in three different tea samples. The proposed method had a linear range from 10 to 500 μmol L-1 and limits of detection and quantification of 2.5 and 8.3 μmol L-1, respectively. Our approach is promising for fabricating simple, inexpensive, yet high-performance, flow injection analysis devices using paper substrates and easy-to-make electrodes that do not require external mechanical pumping systems or complicated valves.
Collapse
Affiliation(s)
- Lauro A. Pradela-Filho
- Instituto de Química, Universidade Federal de Uberlândia, Av. João Naves de Ávila, 2121, Minas Gerais, Uberlândia, MG 38400-902, Brasil
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Eka Noviana
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Diele A. G. Araújo
- Instituto de Química, Universidade Federal de Uberlândia, Av. João Naves de Ávila, 2121, Minas Gerais, Uberlândia, MG 38400-902, Brasil
| | - Regina M. Takeuchi
- Instituto de Química, Universidade Federal de Uberlândia, Av. João Naves de Ávila, 2121, Minas Gerais, Uberlândia, MG 38400-902, Brasil
| | - André L. Santos
- Instituto de Química, Universidade Federal de Uberlândia, Av. João Naves de Ávila, 2121, Minas Gerais, Uberlândia, MG 38400-902, Brasil
| | - Charles S. Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
11
|
Teker T, Hasan AMH, Aslanoglu M. A Boron Doped Diamond Electrode Modified with Nano‐carbon Black for the Sensitive Electrochemical Determination of Chlorogenic Acid. ELECTROANAL 2019. [DOI: 10.1002/elan.201900305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Tugçe Teker
- Department of ChemistryHarran University Şanlıurfa 63510 Turkey
| | | | | |
Collapse
|
12
|
Sanati A, Jalali M, Raeissi K, Karimzadeh F, Kharaziha M, Mahshid SS, Mahshid S. A review on recent advancements in electrochemical biosensing using carbonaceous nanomaterials. Mikrochim Acta 2019; 186:773. [PMID: 31720840 DOI: 10.1007/s00604-019-3854-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/19/2019] [Indexed: 12/29/2022]
Abstract
This review, with 201 references, describes the recent advancement in the application of carbonaceous nanomaterials as highly conductive platforms in electrochemical biosensing. The electrochemical biosensing is described in introduction by classifying biosensors into catalytic-based and affinity-based biosensors and statistically demonstrates the most recent published works in each category. The introduction is followed by sections on electrochemical biosensors configurations and common carbonaceous nanomaterials applied in electrochemical biosensing, including graphene and its derivatives, carbon nanotubes, mesoporous carbon, carbon nanofibers and carbon nanospheres. In the following sections, carbonaceous catalytic-based and affinity-based biosensors are discussed in detail. In the category of catalytic-based biosensors, a comparison between enzymatic biosensors and non-enzymatic electrochemical sensors is carried out. Regarding the affinity-based biosensors, scholarly articles related to biological elements such as antibodies, deoxyribonucleic acids (DNAs) and aptamers are discussed in separate sections. The last section discusses recent advancements in carbonaceous screen-printed electrodes as a growing field in electrochemical biosensing. Tables are presented that give an overview on the diversity of analytes, type of materials and the sensors performance. Ultimately, general considerations, challenges and future perspectives in this field of science are discussed. Recent findings suggest that interests towards 2D nanostructured electrodes based on graphene and its derivatives are still growing in the field of electrochemical biosensing. That is because of their exceptional electrical conductivity, active surface area and more convenient production methods compared to carbon nanotubes. Graphical abstract Schematic representation of carbonaceous nanomaterials used in electrochemical biosensing. The content is classified into non-enzymatic sensors and affinity/ catalytic biosensors. Recent publications are tabulated and compared, considering materials, target, limit of detection and linear range of detection.
Collapse
Affiliation(s)
- Alireza Sanati
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.,Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0E9, Canada
| | - Mahsa Jalali
- Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0E9, Canada
| | - Keyvan Raeissi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Fathallah Karimzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Sahar Sadat Mahshid
- Sunnybrook Research Institute, Sunnybrook Hospital, Toronto, Ontario, M4N 3M5, Canada.
| | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0E9, Canada.
| |
Collapse
|
13
|
Ranganathan P, Mutharani B, Chen SM, Sireesha P. Biocompatible chitosan-pectin polyelectrolyte complex for simultaneous electrochemical determination of metronidazole and metribuzin. Carbohydr Polym 2019; 214:317-327. [PMID: 30926003 DOI: 10.1016/j.carbpol.2019.03.053] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/07/2019] [Accepted: 03/15/2019] [Indexed: 12/15/2022]
Abstract
Development of novel biocompatible sensor material suitable for modest, cost-effective, and rapid practical application is a demanding research interest in the field of electroanalytical chemistry. In this context, for the first time, we utilized biocompatible chitosan-pectin biopolyelectrolyte (CS-PC BPE) complex for the simultaneous electroreduction of an important antibiotic drug (metronidazole-MNZ) and herbicide (metribuzin-MTZ). This sensor reveals an attractive welfares such as simplicity, biocompatibility, and low production cost. Under optimized experimental conditions, the electroanalytical investigation confirmed that CS-PC BPE modified glassy carbon electrode (CS-PC BPE/GCE) was found to sense MNZ and MTZ in the nanomolar range. Moreover, as-prepared CS-PC BPE/GCE exhibited prominent selectivity, stability, and reproducibility. Additionally, the possible MNZ and MTZ sensing mechanism of CS-PC BPE/GCE have been discussed in detail. Lastly, real sample analysis was also carried out and revealed from several investigations that the CS-PC BPE/GCE is a good electrochemical sensor system for the detection of targeted analytes.
Collapse
Affiliation(s)
- Palraj Ranganathan
- Institute of Organic and Polymeric Materials and Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei, Taiwan, ROC
| | - Bhuvanenthiran Mutharani
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Pedaballi Sireesha
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan, ROC
| |
Collapse
|