1
|
Ji YX, Li W, Wu YX, Zhou XF, Bao L, Zhang WY. Highly dispersed noble metal nanoparticle composites on biomass-derived carbon-based carriers: synthesis, characterization, and catalytic applications. RSC Adv 2024; 14:21938-21944. [PMID: 38989244 PMCID: PMC11234501 DOI: 10.1039/d4ra03971h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
Precious metal nanoparticles have been widely investigated due to their excellent activity shown in catalysis and sensing. However, how to prepare highly dispersed noble metal nanoparticles to improve the lifetime of catalysts and reduce the cost is still an urgent problem to be solved. In this study, a carbon-based carrier material was prepared by an expansion method and loaded with Pd or Ag nanoparticles on this carbon material to synthesize precious metal nanoparticle composites, which were characterized in detail. The results show that the nanoparticles prepared using this method exhibit superior dispersion. Under the synergistic effect of noble metal nanoparticles and porous carbon carriers, the composites exhibited excellent catalytic degradation of p-nitrophenol and showed excellent sensing performance in the modified hydrogen peroxide sensor electrode. This approach is highly informative for the preparation of nanocomposites in medical and environmental fields.
Collapse
Affiliation(s)
- Ya-Xin Ji
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University Xi'an 710127 P. R. China
| | - Wei Li
- Sino-Platinum Electronic Materials (Yunnan) Co., Ltd Kunming 650503 China
| | - Ya-Xi Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University Xi'an 710127 P. R. China
| | - Xue-Fei Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University Xi'an 710127 P. R. China
| | - Lin Bao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University Xi'an 710127 P. R. China
| | - Wen-Yan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University Xi'an 710127 P. R. China
| |
Collapse
|
2
|
Elugoke SE, Ganesh P, Kim S, Ebenso EE. Common Transition Metal Oxide Nanomaterials in Electrochemical Sensors for the Diagnosis of Monoamine Neurotransmitter‐Related Disorders. ChemElectroChem 2024; 11. [DOI: 10.1002/celc.202300578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Indexed: 07/23/2024]
Abstract
AbstractMonoamine neurotransmitters are essential for learning, mental alertness, emotions, and blood flow, among other functions. Fatal neurological disorders that signal the imbalance of these biomolecules in the human system include Parkinson's disease, myocardial infarction, Alzheimer's disease, hypoglycemia, Schizophrenia, and a host of other ailments. The diagnosis of these monoamine neurotransmitter‐related conditions revolves around the development of analytical tools with high sensitivity for the four major monoamine neurotransmitters namely dopamine, epinephrine, norepinephrine, and serotonin. The application of electrochemical sensors made from notable metal oxide nanoparticles or composites containing the metal oxide nanoparticles for the detection of these monoamine neurotransmitters was discussed herein. More importantly, the feasibility of the application of the ZnO, CuO, and TiO2 nanoparticle‐based electrochemical sensors for a comprehensive diagnosis of monoamine neurotransmitter‐related conditions was critically investigated in this review.
Collapse
Affiliation(s)
- Saheed E. Elugoke
- Centre for Material Science College of Science, Engineering and Technology University of South Africa Johannesburg 1709 South Africa
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science, Engineering and Technology University of South Africa Johannesburg 1709 South Africa
| | - Pattan‐Siddappa Ganesh
- Interaction Laboratory Advanced Technology Research Center Future Convergence Engineering Korea University of Technology and Education Cheonan 31253 Republic of Korea
| | - Sang‐Youn Kim
- Interaction Laboratory Advanced Technology Research Center Future Convergence Engineering Korea University of Technology and Education Cheonan 31253 Republic of Korea
| | - Eno E. Ebenso
- Centre for Material Science College of Science, Engineering and Technology University of South Africa Johannesburg 1709 South Africa
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science, Engineering and Technology University of South Africa Johannesburg 1709 South Africa
| |
Collapse
|
3
|
Mihret Y, Sisay G, Diro A, Hailemariam S, Kitte SA. Nitrogen Defect-Rich Graphitic Carbon Nitride for Highly Sensitive Voltammetric Determination of Tryptophan. ACS OMEGA 2023; 8:46869-46877. [PMID: 38107901 PMCID: PMC10719911 DOI: 10.1021/acsomega.3c06487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Here, a highly sensitive electrochemical sensor for detection of tryptophan (Trp) using a nitrogen defect graphitic carbon nitride-modified glassy carbon electrode (ND-CN/GCE) was introduced. ND-CN/GCE showed a higher oxidation current for Trp than the graphitic carbon nitride-modified glassy carbon electrode (g-CN/GCE) and bare glassy carbon electrode (BGCE). The synthesized nitrogen defect-rich graphitic carbon nitride (ND-CN) was characterized using X-ray photoelectron spectroscopy, X-ray diffraction spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. Electrochemical impedance spectroscopy and cyclic voltammetry were used to further analyze the electrochemical properties of BGCE, g-CN/GCE, and ND-CN/GCE. The oxidation of Trp at ND-CN/GCE is a diffusion-controlled process at pH 3.0. It was calculated that the transfer coefficient, rate constant, and diffusion coefficient of Trp were 0.53, 2.24 × 103 M-1 s-1, and 8.3 × 10-3 cm2 s-1, respectively, at ND-CN/GCE. Trp was detected using square wave voltammetry, which had a linear range from 0.01 to 40 μM at pH 3.0 and a limit of detection of about 0.0034 μM (3σ/m). Analyzing the presence of Trp in a milk and multivitamin tablet sample with a percentage recovery in the range of 97.0-108% satisfactorily demonstrated the practical usability of the electrochemical sensor. The ND-CN/GCE additionally displays good repeatability and reproducibility and satisfactory selectivity.
Collapse
Affiliation(s)
- Yeabsira Mihret
- Department
of Chemistry, College of Natural Sciences, Jimma University, 378 Jimma, Ethiopia
| | - Getu Sisay
- Department
of Chemistry, College of Natural Sciences, Jimma University, 378 Jimma, Ethiopia
| | - Abebe Diro
- Department
of Chemistry, College of Natural Sciences, Jimma University, 378 Jimma, Ethiopia
| | - Solomon Hailemariam
- Department
of Physics, College of Natural Sciences, Jimma University, 378 Jimma, Ethiopia
| | - Shimeles Addisu Kitte
- Department
of Chemistry, College of Natural Sciences, Jimma University, 378 Jimma, Ethiopia
| |
Collapse
|
4
|
Liu J, Yin B, Liu X, Yang C, Zang S, Wu S. Enhancing electrochemical properties of a two-dimensional zeolitic imidazole framework by incorporating a conductive polymer for dopamine detection. Analyst 2023; 148:4525-4532. [PMID: 37581262 DOI: 10.1039/d3an00588g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The zeolitic imidazole framework with a leaf-shaped morphology (ZIF-L) has a wide range of promising applications in gas storage, battery materials, catalytic reactions, and optoelectronic devices due to its planar leaf-like structure and large surface area. However, the low conductivity, weak catalytic activity, and poor stability in the water dielectric medium of ZIF-L limit its further practical application. To solve these problems, we added the conductive polymer heterocyclic poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to ZIF-L for the sensitive detection of dopamine (DA). The synthesized composite ZIF-L/PEDOT:PSS (ZIF-L/PEDOT) not only retained the surface morphology of ZIF-L but also exhibited excellent electrochemical properties. The higher electrical conductivity of ZIF-L/PEDOT than that of ZIF-L was due to the enhanced electron transfer at the interface between ZIF-L and PEDOT:PSS. As a result, we developed an electrochemical biosensor based on the ZIF-L/PEDOT composite, which has a limit of detection of 7 nM for DA and a wide linear range from 25 nM to 500 μM. Furthermore, the current drop was negligible after 28 days, proving that the biosensor has excellent stability. Based on the above-mentioned outstanding performance, the ZIF-L/PEDOT-based biosensor was successfully used to detect DA in human serum samples. These results demonstrated that ZIF-L/PEDOT is expected to play an essential role in disease detection.
Collapse
Affiliation(s)
- Jing Liu
- School of Chemistry, Dalian University of Technology, Dalian 116023, PR China.
| | - Bing Yin
- School of Chemistry, Dalian University of Technology, Dalian 116023, PR China.
| | - Xiaobo Liu
- School of Chemistry, Dalian University of Technology, Dalian 116023, PR China.
| | - Cheng Yang
- School of Chemistry, Dalian University of Technology, Dalian 116023, PR China.
| | - Shiyu Zang
- School of Chemistry, Dalian University of Technology, Dalian 116023, PR China.
| | - Shuo Wu
- School of Chemistry, Dalian University of Technology, Dalian 116023, PR China.
| |
Collapse
|
5
|
Xia Y, Li G, Zhu Y, He Q, Hu C. Facile preparation of metal-free graphitic-like carbon nitride/graphene oxide composite for simultaneous determination of uric acid and dopamine. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
6
|
Zheng L, Zhang H, Won M, Kim E, Li M, Kim JS. Codoping g-C 3N 4 with boron and graphene quantum dots: Enhancement of charge transfer for ultrasensitive and selective photoelectrochemical detection of dopamine. Biosens Bioelectron 2023; 224:115050. [PMID: 36603286 DOI: 10.1016/j.bios.2022.115050] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/03/2022] [Accepted: 12/27/2022] [Indexed: 01/02/2023]
Abstract
The development of superior photoelectrochemical (PEC) sensors for biosensing has become a major objective of PEC research. However, conventional PEC-active materials are typically constrained by a weak photocurrent response owing to their limited surface-active sites and high electron-hole recombination rate. Here, a boron and graphene quantum dots codoped g-C3N4 (named GBCN) as PEC sensor for highly sensitive dopamine (DA) detection was fabricated. GBCN exhibited the greatest photocurrent response and PEC activity compared to free g-C3N4 and g-C3N4 doped with boron. The proposed PEC sensor for DA determination exhibited a broad linear range (0.001-800 μM) and a low detection limit (0.96 nM). In particular, a sensitivity up to 10.3771 μA/μM/cm2 was seen in the case of GBCN. The high PEC activity can be attributed to the following factors: (1) the boron and graphene quantum dots co-doping significantly increased the specific surface area of g-C3N4, providing more adsorption sites for DA; (2) the dopants extended the absorption intensity of g-C3N4, red-shifting the absorption from 470 to 540 nm; and (3) the synergism of boron and graphene quantum dots efficiently boosted the photogenerated electrons migration from the conduction band of g-C3N4 to graphene quantum dots, facilitating charge separation. In addition, GBCN also exhibited good anti-interference ability and stability. This research may shed light on the creation of a highly sensitive and selective PEC platform for detecting biomolecules.
Collapse
Affiliation(s)
- Longhui Zheng
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Haobo Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Miae Won
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Eunji Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Mingle Li
- Department of Chemistry, Korea University, Seoul, 02841, South Korea.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
7
|
Roostaee M, Beitollahi H, Sheikhshoaie I. Simultaneous Determination of Dopamine and Uric Acid in Real Samples Using a Voltammetric Nanosensor Based on Co-MOF, Graphene Oxide, and 1-Methyl-3-butylimidazolium Bromide. MICROMACHINES 2022; 13:mi13111834. [PMID: 36363855 PMCID: PMC9697397 DOI: 10.3390/mi13111834] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 05/27/2023]
Abstract
A chemically modified carbon paste electrode, based on a CoMOF-graphene oxide (GO) and an ionic liquid of 1-methyl-3-butylimidazolium bromide (CoMOF-GO/1-M,3-BB/CPE), was fabricated for the simultaneous determination of dopamine (DA) and uric acid (UA). The prepared CoMOF/GO nanocomposite was characterized by field emission-scanning electron microscopy (FE-SEM), the X-ray diffraction (XRD) method, a N2 adsorption-desorption isotherm, and an energy dispersive spectrometer (EDS). The electrochemical sensor clearly illustrated catalytic activity towards the redox reaction of dopamine (DA), which can be authenticated by comparing the increased oxidation peak current with the bare carbon paste electrode. The CoMOF-GO/1-M,3-BB/CPE exhibits a wide linear response for DA in the concentration range of 0.1 to 300.0 µM, with a detection limit of 0.04 µM. The oxidation peaks' potential for DA and uric acid (UA) were separated well in the mixture containing the two compounds. This study demonstrated a simple and effective method for detecting DA and UA in real samples.
Collapse
Affiliation(s)
- Maryam Roostaee
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran
| | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran
| |
Collapse
|
8
|
Alebachew N, Murthy HCA, Abdissa B, Demissie TB, von Eschwege KG, Langner EHG, Coetsee-Hugo L. Synthesis and characterization of CuO@S-doped g-C 3N 4 based nanocomposites for binder-free sensor applications. RSC Adv 2022; 12:29959-29974. [PMID: 36321104 PMCID: PMC9580512 DOI: 10.1039/d2ra04752g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/12/2022] [Indexed: 01/24/2023] Open
Abstract
This study presents the simultaneous exfoliation and modification of heterostructured copper oxide incorporated sulfur doped graphitic carbon nitride (CuO@S-doped g-C3N4) nanocomposites (NCs) synthesized via chemical precipitation and pyrolysis techniques. The results revealed that the approach is feasible and highly efficient in producing 2-dimensional CuO@S-doped g-C3N4 NCs. The findings also showed a promising technique for enhancing the optical and electrical properties of bulk g-C3N4 by combining CuO nanoparticles (NPs) with S-doped g-C3N4. The crystallite and the average size of the NCs were validated using X-ray diffraction (XRD) studies. Incorporation of the cubical structured CuO on flower shaped S-doped-g-C3N4 was visualized and characterized through XRD, HR-SEM/EDS/SED, FT-IR, BET, UV-Vis/DRS, PL, XPS and impedance spectroscopy. The agglomerated NCs had various pore sizes, shapes and nanosized crystals, while being photo-active in the UV-vis range. The synergistic effect of CuO and S-doped g-C3N4 as co-modifiers greatly facilitates the electron transfer process between the electrolyte and the bare glassy carbon electrode. Specific surface areas of the NCs clearly revealed modification of bulk S-doped g-C3N4 when CuO NPs are incorporated with S-doped g-C3N4, providing a suitable environment for the binder-free decorated electrode with sensing behavior for hazardous pollutants. This was tested for the preparation of a 4-nitrophenol sensor.
Collapse
Affiliation(s)
- Nigussie Alebachew
- Department of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology UniversityP.O. Box 1888AdamaEthiopia
| | - H. C. Ananda Murthy
- Department of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology UniversityP.O. Box 1888AdamaEthiopia,Department of Prosthodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Science (SIMAT), Saveetha UniversityChennai-600077Tamil NaduIndia
| | - Bedassa Abdissa
- Department of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology UniversityP.O. Box 1888AdamaEthiopia
| | - Taye B. Demissie
- Department of Chemistry, University of BotswanaPbag UB 00704GaboroneBotswana
| | - Karel G. von Eschwege
- Department of Chemistry, University of the Free StateP.O Box 339BloemfonteinSouth Africa
| | - Ernst H. G. Langner
- Department of Chemistry, University of the Free StateP.O Box 339BloemfonteinSouth Africa
| | - Liza Coetsee-Hugo
- Department of Chemistry, University of the Free StateP.O Box 339BloemfonteinSouth Africa
| |
Collapse
|
9
|
Ayoub N, Toufaily J, Guénin E, Enderlin G. Metal vs. Metal-Free Catalysts for Oxidation of 5-Hydroxymethylfurfural and Levoglucosenone to Biosourced Chemicals. CHEMSUSCHEM 2022; 15:e202102606. [PMID: 35073445 DOI: 10.1002/cssc.202102606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Lignocellulosic feedstocks, such as forestry biomass and agricultural crop residues, can be utilized to generate biofuels and biochemicals. Converting these organic waste materials into biochemicals is widely regarded as a remedial approach to develop a sustainable, clean, and green energy source. Nevertheless, are these methods sustainable and clean? Prior studies have shown that most such conversions use metals - including heavy metals or noble metals - as catalysts. In addition to the fact that many metals (e. g., aluminum, cobalt, titanium, platinum) have been listed as critical minerals, these methods suffer from high cost, deactivation, and leakage problems and the release of toxic wastes. This Review summarizes catalytic methods using metal and metal-free catalysts for the oxidation of the platform molecules 5-hydroxymethylfurfural and levoglucosenone and demonstrates the potential and effectiveness of metal-free catalysts.
Collapse
Affiliation(s)
- Nadim Ayoub
- Université de technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de recherche Royallieu, CS 60 319 - 60 203, Compiègne Cedex
| | - Joumana Toufaily
- Laboratoire de Matériaux, Catalyse, Environnement et Méthodes analytiques (MCEMA-CHAMSI), EDST Université Libanaise, Campus Rafic Hariri, Hadath, Beyrouth, Lebanon
| | - Erwann Guénin
- Université de technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de recherche Royallieu, CS 60 319 - 60 203, Compiègne Cedex
| | - Gérald Enderlin
- Université de technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de recherche Royallieu, CS 60 319 - 60 203, Compiègne Cedex
| |
Collapse
|
10
|
Ali S, Mansha M, Baig N, Khan SA. Recent Trends and Future Perspectives of Emergent Analytical Techniques for Mercury Sensing in Aquatic Environments. CHEM REC 2022; 22:e202100327. [PMID: 35253977 DOI: 10.1002/tcr.202100327] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/29/2022] [Accepted: 02/22/2022] [Indexed: 11/10/2022]
Abstract
Environmental emissions of mercury from industrial waste and natural sources, even in trace amounts, are toxic to organisms and ecosystems. However, industrial-scale mercury detection is limited by the high cost, low sensitivity/specificity, and poor selectivity of the available analytical tools. This review summarizes the key sensors for mercury detection in aqueous environments: colorimetric-, electrochemical-, fluorescence-, and surface-enhanced Raman spectroscopy-based sensors reported between 2014-2021. It then compares the performances of these sensors in the determination of inorganic mercury (Hg2+ ) and methyl mercury (CH3 Hg+ ) species in aqueous samples. Mercury sensors for aquatic applications still face serious challenges in terms of difficult deployment in remote areas and low robustness, reliability, and selectivity in harsh environments. We provide future perspectives on the selective detection of organomercury species, which are especially toxic and reactive in aquatic environments. This review is intended as a valuable resource for scientists in the field of mercury sensing.
Collapse
Affiliation(s)
- Shahid Ali
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Muhammad Mansha
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Safyan Akram Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| |
Collapse
|
11
|
Gajurel S, Dam B, Bhushan M, Singh LR, Pal AK. CuO–NiO bimetallic nanoparticles supported on graphitic carbon nitride with enhanced catalytic performance for the synthesis of 1,2,3‐triazoles, bis‐1,2,3‐triazoles, and tetrazoles in parts per million level. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sushmita Gajurel
- Department of Chemistry, Centre for Advanced Studies North‐Eastern Hill University Shillong Meghalaya India
| | - Binoyargha Dam
- Department of Chemistry Indian Institute of Technology‐Guwahati Guwahati Assam India
- Department of Nanotechnology North‐Eastern Hill University Shillong Meghalaya India
| | - Mayank Bhushan
- Department of Nanotechnology North‐Eastern Hill University Shillong Meghalaya India
| | - L. Robindro Singh
- Department of Nanotechnology North‐Eastern Hill University Shillong Meghalaya India
| | - Amarta Kumar Pal
- Department of Chemistry, Centre for Advanced Studies North‐Eastern Hill University Shillong Meghalaya India
| |
Collapse
|
12
|
Li J, Wang S, Zhuang Z, Liu Z, Guo Z, Huang X. In-situ synthesis of Cu/Cu2+1O/carbon spheres for the electrochemical sensing of glucose in serum. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/j.cjac.2021.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Chen X, Li N, Rong Y, Hou Y, Huang Y, Liang W. β-Cyclodextrin functionalized 3D reduced graphene oxide composite-based electrochemical sensor for the sensitive detection of dopamine. RSC Adv 2021; 11:28052-28060. [PMID: 35480757 PMCID: PMC9038067 DOI: 10.1039/d1ra02313f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
A three-dimensional reduced graphene oxide nanomaterial with β-cyclodextrin modified glassy carbon electrode (3D-rGO/β-CD/GCE) was constructed and used to detect the electrochemical behavior of dopamine (DA). The nanocomposite materials were characterized by scanning electron microscopy (SEM), infrared spectrometry (FT-IR), Raman spectrogram and thermogravimetric analysis (TGA), which showed that β-CD was well modified on 3D graphene with a porous structure. The electrochemical properties of different modified electrodes were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), proving the highest electron transfer rate of the 3D-rGO/β-CD modified electrode. The experimental conditions such as scan rate, pH, enrichment time and layer thickness were optimized. Under the best experimental conditions, DA was detected by differential pulse voltammetry (DPV) by 3D-rGO/β-CD/GCE with excellent electrocatalytic ability and satisfactory recognition ability, resulting in a wide linear range of 0.5-100 μM and a low detection limit (LOD) of 0.013 μM. The modified electrode based on 3D-rGO/β-CD nanocomposites is promising in the field of electrochemical sensors due to its high sensitivity and other excellent properties.
Collapse
Affiliation(s)
- Xuan Chen
- Department of Neurology, Taiyuan Central Hospital of Shanxi Medical University Taiyuan 030062 China
| | - Na Li
- Department of Neurology, Taiyuan Central Hospital of Shanxi Medical University Taiyuan 030062 China
| | - Yanqin Rong
- Institute of Environmental Science, Shanxi University Taiyuan 030006 China
| | - Yuli Hou
- Department of Neurology, First Hospital of Shanxi Medical University Taiyuan 030001 China
| | - Yu Huang
- Institute of Environmental Science, Shanxi University Taiyuan 030006 China
| | - Wenting Liang
- Institute of Environmental Science, Shanxi University Taiyuan 030006 China
| |
Collapse
|
14
|
Liu D, Tan H, Meng L, Jia H, Zhou W, Wu H. Preparation of Cysteine‐Functionalized Fe
3
O
4
Magnetic Nanoparticles for Determination of Cu
2+. ChemistrySelect 2021. [DOI: 10.1002/slct.202100919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dan Liu
- School of Chemical and Environmental Engineering Jiangsu University of Technology Zhongwu Avenue 1801 Changzhou 213001 P. R. China
| | - Heping Tan
- School of Chemical and Environmental Engineering Jiangsu University of Technology Zhongwu Avenue 1801 Changzhou 213001 P. R. China
| | - Lili Meng
- School of Chemical and Environmental Engineering Jiangsu University of Technology Zhongwu Avenue 1801 Changzhou 213001 P. R. China
| | - Hailang Jia
- School of Chemical and Environmental Engineering Jiangsu University of Technology Zhongwu Avenue 1801 Changzhou 213001 P. R. China
| | - Wenjuan Zhou
- School of Chemical and Environmental Engineering Jiangsu University of Technology Zhongwu Avenue 1801 Changzhou 213001 P. R. China
| | - Haiyan Wu
- School of Chemical and Environmental Engineering Jiangsu University of Technology Zhongwu Avenue 1801 Changzhou 213001 P. R. China
| |
Collapse
|
15
|
Amara U, Riaz S, Mahmood K, Akhtar N, Nasir M, Hayat A, Khalid M, Yaqub M, Nawaz MH. Copper oxide integrated perylene diimide self-assembled graphitic pencil for robust non-enzymatic dopamine detection. RSC Adv 2021; 11:25084-25095. [PMID: 35481009 PMCID: PMC9036951 DOI: 10.1039/d1ra03908c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 01/13/2023] Open
Abstract
Exploring a robust, extremely sensitive, cost-effective and reliable assay platform for the precise analysis of dopamine (DA) has become a big challenge predominantly at the clinical level. To participate in this quest, herein, we fabricated a perylene diimide (PDI) self-assembled graphitic surface of the graphitic pencil electrode (GPE) anchored copper oxide (CuO). The self-assembled N-rich PDI led to the fast movement of ions by decreasing the bandgap and improved the electron transport kinetics with more exposed catalytic active sites, thus resulting in the robust electrochemical sensing of DA. The designed sensor exhibited good sensitivity (4 μM-1 cm-2), high structural stability, repeatability and excellent reproducibility with an RSD value of 2.9%. Moreover, the developed system showed a wide linear range (5 μM to 500 μM) and reliable selectivity even in the presence of co-existing interferants, such as ascorbic acid and uric acid. The fabricated nanohybrid was eventually employed to analyze DA in spiked physiological fluids and provided satisfactory recoveries. The designed PDI-CuO based interface also showed a very low detection limit of 6 nM (S/N = 3), consequently confirming its suitability for clinical and biological applications.
Collapse
Affiliation(s)
- Umay Amara
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000 Pakistan
| | - Sara Riaz
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus 54000 Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Naeem Akhtar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000 Pakistan
| | - Muhammad Nasir
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000 Pakistan
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000 Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering and Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Yaqub
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Mian Hasnain Nawaz
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000 Pakistan
| |
Collapse
|
16
|
Zhang M, Cao K, Mei L, Wang X, Liao X, Qiao X, Hong C. Detection of AFP by Electrochemical Immunosensor Based on Ag/Fe
3
O
4
/g‐C
3
N
4. ChemistrySelect 2021. [DOI: 10.1002/slct.202003896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mengmeng Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps Shihezi University Shihezi 832003 PR China
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region Shihezi University Shihezi 832003 PR China
- School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 PR China
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region Shihezi University Shihezi 832003 PR China
| | - Kaihang Cao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps Shihezi University Shihezi 832003 PR China
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region Shihezi University Shihezi 832003 PR China
- School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 PR China
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region Shihezi University Shihezi 832003 PR China
| | - Lisha Mei
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps Shihezi University Shihezi 832003 PR China
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region Shihezi University Shihezi 832003 PR China
- School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 PR China
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region Shihezi University Shihezi 832003 PR China
| | - Xiao Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps Shihezi University Shihezi 832003 PR China
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region Shihezi University Shihezi 832003 PR China
- School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 PR China
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region Shihezi University Shihezi 832003 PR China
| | - Xiaochen Liao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps Shihezi University Shihezi 832003 PR China
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region Shihezi University Shihezi 832003 PR China
- School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 PR China
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region Shihezi University Shihezi 832003 PR China
| | - Xiuwen Qiao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps Shihezi University Shihezi 832003 PR China
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region Shihezi University Shihezi 832003 PR China
- School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 PR China
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region Shihezi University Shihezi 832003 PR China
| | - Chenglin Hong
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps Shihezi University Shihezi 832003 PR China
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region Shihezi University Shihezi 832003 PR China
- School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 PR China
- Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region Shihezi University Shihezi 832003 PR China
| |
Collapse
|
17
|
Fazio E, Spadaro S, Corsaro C, Neri G, Leonardi SG, Neri F, Lavanya N, Sekar C, Donato N, Neri G. Metal-Oxide Based Nanomaterials: Synthesis, Characterization and Their Applications in Electrical and Electrochemical Sensors. SENSORS 2021; 21:s21072494. [PMID: 33916680 PMCID: PMC8038368 DOI: 10.3390/s21072494] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Pure, mixed and doped metal oxides (MOX) have attracted great interest for the development of electrical and electrochemical sensors since they are cheaper, faster, easier to operate and capable of online analysis and real-time identification. This review focuses on highly sensitive chemoresistive type sensors based on doped-SnO2, RhO, ZnO-Ca, Smx-CoFe2−xO4 semiconductors used to detect toxic gases (H2, CO, NO2) and volatile organic compounds (VOCs) (e.g., acetone, ethanol) in monitoring of gaseous markers in the breath of patients with specific pathologies and for environmental pollution control. Interesting results about the monitoring of biochemical substances as dopamine, epinephrine, serotonin and glucose have been also reported using electrochemical sensors based on hybrid MOX nanocomposite modified glassy carbon and screen-printed carbon electrodes. The fundamental sensing mechanisms and commercial limitations of the MOX-based electrical and electrochemical sensors are discussed providing research directions to bridge the existing gap between new sensing concepts and real-world analytical applications.
Collapse
Affiliation(s)
- Enza Fazio
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (S.S.); (F.N.)
- Correspondence: (E.F.); (C.C.)
| | - Salvatore Spadaro
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (S.S.); (F.N.)
| | - Carmelo Corsaro
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (S.S.); (F.N.)
- Correspondence: (E.F.); (C.C.)
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy;
| | - Salvatore Gianluca Leonardi
- Institute of Advanced Technologies for Energy (ITAE)—CNR, Salita Santa Lucia Sopra Contesse 5, I-98126 Messina, Italy;
| | - Fortunato Neri
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (S.S.); (F.N.)
| | - Nehru Lavanya
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630003, India; (N.L.); (C.S.)
| | - Chinnathambi Sekar
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630003, India; (N.L.); (C.S.)
| | - Nicola Donato
- Department of Engineering, Messina University, I-98166 Messina, Italy; (N.D.); (G.N.)
| | - Giovanni Neri
- Department of Engineering, Messina University, I-98166 Messina, Italy; (N.D.); (G.N.)
| |
Collapse
|
18
|
Wang P, Yan Y, Zhang Y, Gao T, Ji H, Guo S, Wang K, Xing J, Dong Y. An Improved Synthesis of Water-Soluble Dual Fluorescence Emission Carbon Dots from Holly Leaves for Accurate Detection of Mercury Ions in Living Cells. Int J Nanomedicine 2021; 16:2045-2058. [PMID: 33731993 PMCID: PMC7957229 DOI: 10.2147/ijn.s298152] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Background Carbon dots (CDs) emitting near-infrared fluorescence were recently synthesized from green leaves. However, the Hg2+ detection of CDs was limited because of the insufficient water solubility, low fluorescence and poor stability. Methods Dual fluorescence emission water-soluble CD (Dual-CD) was prepared through a solvothermal method from holly leaves and low toxic PEI1.8k. PEG was further grafted onto the surface to improve the water solubility and stability. Results The Dual-CD solution can emit 487 nm and 676 nm fluorescence under single excitation and exhibit high quantum yield of 16.8%. The fluorescence at 678 nm decreased remarkably while the emission at 470 nm was slightly affected by the addition of Hg2+. The ratiometric Hg2+ detection had a wide linear range of 0–100 μM and low detection limit of 14.0 nM. In A549 cells, there was a good linear relation between F487/F676 and the concentration of Hg2+ in the range of 0–60 μM; the detection limit was 477 nM. Furthermore, Dual-CD showed visual fluorescence change under Hg2+. Conclusion Dual-CD has ratiometric responsiveness to Hg2+ and can be applied for quantitative Hg2+ detection in living cells.
Collapse
Affiliation(s)
- Pengchong Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.,School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Yan Yan
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.,School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Ying Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Tingting Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Hongrui Ji
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Shiyan Guo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Ke Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Jianfeng Xing
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| |
Collapse
|
19
|
Gao J, Li H, Li M, Wang G, Long Y, Li P, Li C, Yang B. Polydopamine/graphene/MnO 2 composite-based electrochemical sensor for in situ determination of free tryptophan in plants. Anal Chim Acta 2020; 1145:103-113. [PMID: 33453871 DOI: 10.1016/j.aca.2020.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/02/2023]
Abstract
The in vivo detection of small active molecules in plant tissues is essential for the development of precision agriculture. Tryptophan (Trp) is an important precursor material for auxin biosynthesis in plants, and the detection of Trp levels in plants is critical for regulating the plant growth process. In this study, an electrochemical plant sensor was fabricated by electrochemically depositing a polydopamine (PDA)/reduced graphene oxide (RGO)-MnO2 nanocomposite onto a glassy carbon electrode (GCE). PDA/RGO-MnO2/GCE exhibited high electrocatalytic activity for the oxidation of Trp owing to the combined selectivity of PDA and catalytic activity of RGO-MnO2. To address the pH variability of plants, a reliable Trp detection program was proposed for selecting an appropriate quantitative detection model for the pH of the plant or plant tissue of interest. Therefore, a series of linear regression curves was constructed in the pH range of 4.0-7.0 using the PDA/RGO-MnO2/GCE-based sensor. In this pH range, the linear detection range of Trp was 1-300 μM, the sensitivity was 0.39-1.66 μA μM-1, and the detection limit was 0.22-0.39 μM. Moreover, the practical applicability of the PDA/RGO-MnO2/GCE-based sensor was successfully demonstrated by determining Trp in tomato fruit and juice. This sensor stably and reliably detected Trp levels in tomatoes in vitro and in vivo, demonstrating the feasibility of this research strategy for the development of electrochemical sensors for measurements in various plant tissues.
Collapse
Affiliation(s)
- Jiepei Gao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, PR China
| | - Hongji Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, PR China.
| | - Mingji Li
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Engineering Research Center of Optoelectronic Devices & Communication Technology (Ministry of Education), School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, 300384, PR China.
| | - Guilian Wang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yongbing Long
- College of Electronic Engineering, South China Agricultural University, Guangzhou, 510642, PR China
| | - Penghai Li
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Engineering Research Center of Optoelectronic Devices & Communication Technology (Ministry of Education), School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, 300384, PR China
| | - Cuiping Li
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Engineering Research Center of Optoelectronic Devices & Communication Technology (Ministry of Education), School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, 300384, PR China
| | - Baohe Yang
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Engineering Research Center of Optoelectronic Devices & Communication Technology (Ministry of Education), School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, 300384, PR China
| |
Collapse
|
20
|
Idris AO, Oseghe EO, Msagati TAM, Kuvarega AT, Feleni U, Mamba B. Graphitic Carbon Nitride: A Highly Electroactive Nanomaterial for Environmental and Clinical Sensing. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5743. [PMID: 33050361 PMCID: PMC7600177 DOI: 10.3390/s20205743] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022]
Abstract
Graphitic carbon nitride (g-C3N4) is a two-dimensional conjugated polymer that has attracted the interest of researchers and industrial communities owing to its outstanding analytical merits such as low-cost synthesis, high stability, unique electronic properties, catalytic ability, high quantum yield, nontoxicity, metal-free, low bandgap energy, and electron-rich properties. Notably, graphitic carbon nitride (g-C3N4) is the most stable allotrope of carbon nitrides. It has been explored in various analytical fields due to its excellent biocompatibility properties, including ease of surface functionalization and hydrogen-bonding. Graphitic carbon nitride (g-C3N4) acts as a nanomediator and serves as an immobilization layer to detect various biomolecules. Numerous reports have been presented in the literature on applying graphitic carbon nitride (g-C3N4) for the construction of electrochemical sensors and biosensors. Different electrochemical techniques such as cyclic voltammetry, electrochemiluminescence, electrochemical impedance spectroscopy, square wave anodic stripping voltammetry, and amperometry techniques have been extensively used for the detection of biologic molecules and heavy metals, with high sensitivity and good selectivity. For this reason, the leading drive of this review is to stress the importance of employing graphitic carbon nitride (g-C3N4) for the fabrication of electrochemical sensors and biosensors.
Collapse
Affiliation(s)
- Azeez O. Idris
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; (E.O.O.); (T.A.M.M.); (A.T.K.); (U.F.); (B.M.)
| | | | | | | | | | | |
Collapse
|
21
|
Rostami S, Mehdinia A, Jabbari A. Intrinsic peroxidase-like activity of graphene nanoribbons for label-free colorimetric detection of dopamine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111034. [DOI: 10.1016/j.msec.2020.111034] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 12/25/2022]
|
22
|
Yang L, Zhao Z, Hu J, Wang H, Dong J, Wan X, Cai Z, Li M. Copper Oxide Nanoparticles with Graphitic Carbon Nitride for Ultrasensitive Photoelectrochemical Aptasensor of Bisphenol A. ELECTROANAL 2020. [DOI: 10.1002/elan.201900638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Liqin Yang
- College of Chemistry and Chemical EngineeringXingtai University, Xingtai Hebei 054001 China
| | - Zhiju Zhao
- College of Chemistry and Chemical EngineeringXingtai University, Xingtai Hebei 054001 China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Jie Hu
- Xingtai University, Xingtai Hebei 054001 China
| | - Huibin Wang
- Xingtai University, Xingtai Hebei 054001 China
| | - Junfang Dong
- College of MarxismXingtai University, Xingtai Hebei 054001 China
| | - Xiang Wan
- College of Chemistry and Chemical EngineeringXingtai University, Xingtai Hebei 054001 China
| | - Zhenyu Cai
- Xingtai University, Xingtai Hebei 054001 China
| | - Mengying Li
- Wuhan Hudiandian Technology Co., Ltd. Wuhan 430000 P. R. China
| |
Collapse
|
23
|
Chen TW, Chinnapaiyan S, Chen SM, Ajmal Ali M, Elshikh MS, Hossam Mahmoud A. Facile synthesis of copper ferrite nanoparticles with chitosan composite for high-performance electrochemical sensor. ULTRASONICS SONOCHEMISTRY 2020; 63:104902. [PMID: 31951998 DOI: 10.1016/j.ultsonch.2019.104902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Herein, the synthesis of copper ferrite nanoparticles (CuFe2O4 NPs)/chitosan have been prepared by sonochemical route under ultrasonic irradiation bath at 40 kHz and 50 W. A high sensitive and stable modified electrochemical sensor was developed using a composition of copper ferrite nanoparticles coordinated with biopolymer through a facile ultrasound approach. Besides, power and frequency parameters are highly important for sonochemical synthesis and specifically structure, and size of the nanomaterials development during the ultrasonic irradiation time. In this work, ultrasonic bath was used to synthesis of CuFe2O4 nanomaterial at 40 kHz with 1 h. CuFe2O4/chitosan was characterized by FESEM, EDX, XRD and electrochemical methods. Furthermore, 8-hydroxyguanine is one of biomarker by oxidative stress. The concentrations of 8-hydroxyguanine within a cell are a measurement of oxidative stress in human body. Consequently, the measurement of 8-hydroxyguanine in blood serum samples with high specificity is of greatest importance. The CuFe2O4/chitosan modified electrode is displayed a low detection limit of 8.6 nM and long linear range (0.025-697.175 µM).
Collapse
Affiliation(s)
- Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei, Taiwan, ROC
| | - Sathishkumar Chinnapaiyan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Sciences, King Saud University P.O. Box. 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Sciences, King Saud University P.O. Box. 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed Hossam Mahmoud
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
24
|
Chen TW, Chinnapaiyan S, Chen SM, Ali MA, Elshikh MS, Mahmoud AH. A feasible sonochemical approach to synthesize CuO@CeO 2 nanomaterial and their enhanced non-enzymatic sensor performance towards neurotransmitter. ULTRASONICS SONOCHEMISTRY 2020; 63:104903. [PMID: 31951999 DOI: 10.1016/j.ultsonch.2019.104903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
A nanostructured and high conductive cupric oxide (CuO NPs) with hierarchical CeO2 sheets-like structure was synthesized by a facile sonochemical approach. Furthermore, CuO/CeO2 nanostructure is synthesized by high-intensity ultrasonic probe (Ti-horn, 50 kHz and 100 W) at ambient air. Moreover, the synthesized CuO/CeO2 material was characterized by various analytical techniques including FESEM, EDX, XRD and electrochemical methods. Then, the synthesized CuO/CeO2 composite was applied for the electrocatalytic detection of dopamine using CV and DPV techniques. In addition, the CuO/CeO2 modified electrode has good electrocatalytic performance with high linear range from 0.025 to 98.5 µM towards the determination of dopamine drug and high sensitivity of the CuO/CeO2 modified drug sensor was calculated as 16.34 nM and 4.823 μA·µM-1·cm-2, respectively. Moreover, a repeatability, reproducibility and stability of the CuO@CeO2 mixture modified electrode were analyzed towards the determination of dopamine biomolecule. Interestingly, the real time application of CuO@CeO2 modified electrode was established in different serum and drug samples.
Collapse
Affiliation(s)
- Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei, Taiwan, Republic of China
| | - Sathishkumar Chinnapaiyan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China.
| | - M Ajmal Ali
- Department of Botany, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed Hossam Mahmoud
- Department Zoology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
25
|
Photoelectrochemical assay for DNA hydroxymethylation determination based on the inhibited photoactivity of black TiO 2 nanosphere by ZnO. Mikrochim Acta 2020; 187:156. [PMID: 32025819 DOI: 10.1007/s00604-020-4131-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/20/2020] [Indexed: 10/25/2022]
Abstract
A photoelectrochemical method was proposed for DNA hydroxymethylation determination using black TiO2 (B-TiO2) nanosphere as photoactive material and ZnO as photoactivity inhibitor. After hydroxymethylated DNA (5hmC-DNA) was captured on the probe modified B-TiO2/ITO electrode surface through hybridization, a glycosyl can be then transferred from uridine diphosphoglucose to 5hmC-DNA and formed a covalent structure with -CH2OH in the presence of T4 β-glucosyltransferase (β-GT). Afterwards, based on a series of covalent reaction, amino functionalized ZnO nanoparticles are further immobilized to the surface of the electrode. Due to the capacity to expend the irradiation light and the photogenerated electron of electron donor, the modified ZnO nanoparticles can result in a decreased photocurrent. The developed method shows wide linear ranges from 0.05-200 nM for hydroxymethylated DNA and 1-220 unit·mL-1 for T4-β-glucosyltransferase. The corresponding determination limits were 0.013 nM and 0.24 unit·mL-1, respectively. The enzyme activity inhibited by 4-phenylimidazole was evaluated. This photoelectrochemical method shows high specificity for 5hmC-DNA (compared to 5fC, 5mC, m6A, control) and β-GT (compared to β-AGT, UGT2B7), and shows excellent stability for testing 5hmC (RSD = 2.75%). Graphical abstractSchematic representation of photoelectrochemical method for DNA hydroxymethylation and β-glucosyltransferase detection based on the glycosylation reaction of -CH2OH in 5-hydroxymethylcytosine and the inhibition activity of ZnO to the photoactivity of black TiO2 nanospheres.
Collapse
|
26
|
Verma A, Kumar S, Chang WK, Fu YP. Bi-functional Ag-Cu xO/g-C 3N 4 hybrid catalysts for the reduction of 4-nitrophenol and the electrochemical detection of dopamine. Dalton Trans 2020; 49:625-637. [PMID: 31859301 DOI: 10.1039/c9dt04309h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The immense need to build highly efficient catalysts has always been at the forefront of environmental remediation research. Herein, we have synthesized dual-phase copper oxide containing Cu2O and CuO originating from the same reaction using hexamethyltetramine (HMT). Simultaneously, we coupled it with g-C3N4 (g-CN), constructing a triple synergetic heterojunction, which is reported significantly less often in the literature. Hydrothermal reactions led to the formation of various catalysts, namely, Ag-Cu2O-CuO-gCN (ACCG), Ag-CuO-gCN (ACG), Ag-Cu2O-CuO (ACC) and Ag-CuO (AC), which were thoroughly characterized via XRD and FESEM to gain structural, crystallographic and morphological insights. We clearly observed the pure phase formation of the catalysts and the development of sheet-like CuO and truncated octahedrons of Cu2O fused together within the g-CN framework. Also, XPS studies revealed the presence of copper in two different oxidation states, namely, Cu2+ and Cu+. BET analysis was performed to analyze the surface area and pore volume of the catalysts, which play very significant roles in catalytic reduction. The catalytic efficiencies of the catalysts were evaluated via the reduction of 100 ppm 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) without using any light irradiation. The most efficient catalyst was ACCG, revealing the reduction of 4-NP in 4 minutes. Both Cu2O and g-CN played significant roles in reduction, following zero-order kinetics, unlike that which is often reported in the literature. We also evaluated the catalytic reduction with different concentrations of 4-NP and tuning the catalyst amount as well. A mechanism was postulated based on the XRD results of the post-catalytic reduction catalyst. The ACCG catalyst was also successfully tested as an effective dopamine sensor. The GC/ACCG electrode exhibited oxidation peak current density of 0.28 mA cm-2, which was much higher than those of the other catalysts. This unique combination of pure phase materials to form a composite as an effective catalyst as well as a sensor is an exclusive effort towards environmental remediation.
Collapse
Affiliation(s)
- Atul Verma
- Department of Materials Science and Engineering, National Dong Hwa University, Hualien 97401, Taiwan.
| | | | | | | |
Collapse
|
27
|
Colorimetric determination of the activity of alkaline phosphatase by exploiting the oxidase-like activity of palladium cube@CeO2 core-shell nanoparticles. Mikrochim Acta 2020; 187:115. [DOI: 10.1007/s00604-019-4070-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/06/2019] [Indexed: 12/19/2022]
|
28
|
Zhu Y, Wang Y, Kang K, Lin Y, Guo W, Wang J. A nickel-cobalt bimetallic phosphide nanocage as an efficient electrocatalyst for nonenzymatic sensing of glucose. Mikrochim Acta 2020; 187:100. [PMID: 31912282 DOI: 10.1007/s00604-019-4073-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/06/2019] [Indexed: 11/28/2022]
Abstract
The authors describe Ni-Co bimetal phosphide (NiCoP) nanocages that exhibit enhanced electrocatalytic performance toward glucose oxidation. The nanocages offer an appealing architecture, large specific area, and good accessibility for the analyte glucose. When placed on a glassy carbon electrode, the sensor exhibits attractive figures of merit for sensing glucose in 0.1 M NaOH solution including (a) a wide linear range (0.005-7 mM), (b) a low determination limit (0.36 μM), (c) high sensitivity (6115 μA•μM-1•cm-2), (d) a relatively low working potential (0.50 V vs. Ag/AgCl), and (e) good selectivity, reproducibility, and stability. The sensor is successfully applied to the determination of glucose in human serum samples. Graphical abstractSchematic representation of a glassy carbon electrode modified with Ni-Co bimetal phosphide (NiCoP) nanocage. NiCoP nanocage exhibits excellent electrocatalytic activity toward glucose oxidation. NiCoP nanocage is applied in a sensitive non-enzymatic glucose sensor.
Collapse
Affiliation(s)
- Yanyan Zhu
- School of Pharmaceutical Sciences, Hebei Medical University, Zhongshan East Road 361, Shijiazhuang, 050017, People's Republic of China.
| | - Yalin Wang
- School of Pharmaceutical Sciences, Hebei Medical University, Zhongshan East Road 361, Shijiazhuang, 050017, People's Republic of China
| | - Kai Kang
- School of Pharmaceutical Sciences, Hebei Medical University, Zhongshan East Road 361, Shijiazhuang, 050017, People's Republic of China
| | - Yulong Lin
- School of Pharmaceutical Sciences, Hebei Medical University, Zhongshan East Road 361, Shijiazhuang, 050017, People's Republic of China
| | - Wei Guo
- School of Pharmaceutical Sciences, Hebei Medical University, Zhongshan East Road 361, Shijiazhuang, 050017, People's Republic of China
| | - Jing Wang
- School of Pharmaceutical Sciences, Hebei Medical University, Zhongshan East Road 361, Shijiazhuang, 050017, People's Republic of China.
| |
Collapse
|
29
|
Ratnam KV, Manjunatha H, Janardan S, Babu Naidu KC, Ramesh S. Nonenzymatic electrochemical sensor based on metal oxide, MO (M= Cu, Ni, Zn, and Fe) nanomaterials for neurotransmitters: An abridged review. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
30
|
Xiao X, Zhang X, Zhang Z, You J, Liu S, Wang Y. Macro-/meso-porous NiCo 2O 4 synthesized by template-free solution combustion to enhance the performance of a nonenzymatic amperometric glucose sensor. Mikrochim Acta 2019; 187:64. [PMID: 31853725 DOI: 10.1007/s00604-019-4063-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/05/2019] [Indexed: 01/03/2023]
Abstract
A sensitive nonenzymatic amperometric glucose sensor is described that relies on a glassy carbon electrode modified with a macro-/meso-porous NiCo2O4. NiCo2O4 with spinel structure has been prepared via a one-step solution combustion method. The material was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen absorption/desorption. An electrode was coated with the porous material and then displayed excellent electrocatalytic activity towards the direct oxidation of glucose in 0.15 M NaOH solution by cyclic voltammetry. Amperometric I-t curve demonstrated a sensitivity of 2100 μA·mM-1·cm-2 at an applied potential of 0.45 V (vs Hg/HgCl). The sensor has a linear response in the 0.001 to 1.0 mΜ glucose concentration range, a fast response time (3.9 s) and a low detection limit (0.38 μΜ). Graphical abstract.
Collapse
Affiliation(s)
- Xuechun Xiao
- School of Materials Science and Engineering, Yunnan University, 650091, Kunming, People's Republic of China
| | - Xuanming Zhang
- School of Materials Science and Engineering, Yunnan University, 650091, Kunming, People's Republic of China
| | - Zhanyu Zhang
- School of Materials Science and Engineering, Yunnan University, 650091, Kunming, People's Republic of China
| | - Junda You
- School of Materials Science and Engineering, Yunnan University, 650091, Kunming, People's Republic of China
| | - Sirui Liu
- School of Materials Science and Engineering, Yunnan University, 650091, Kunming, People's Republic of China
| | - Yude Wang
- School of Materials Science and Engineering, Yunnan University, 650091, Kunming, People's Republic of China. .,Key Lab of Quantum Information of Yunnan Province, Yunnan University, 650091, Kunming, People's Republic of China.
| |
Collapse
|
31
|
A polymer monolith composed of a perovskite and cucurbit[6]uril hybrid for highly selective enrichment of phosphopeptides prior to mass spectrometric analysis. Mikrochim Acta 2019; 187:68. [PMID: 31853651 DOI: 10.1007/s00604-019-4054-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/28/2019] [Indexed: 12/21/2022]
Abstract
A hybrid monolith was prepared from perovskite and cucurbit[6]uril [poly(hydroxyethyl methacrylate-pentaerythritol triacrylate) monolith] for the enrichment of phosphopeptides. By coupling with mass spectrometry, three goals were simultaneously realized, viz. (a) selective enrichment of phosphopeptides from non-phosphopeptides, (b) identification of mono- and multi-phosphopeptides, and (c) recognition of tyrosine phosphopeptides. The perovskite introduced into the monolith warrants high selectivity for phosphopeptides even at a high (10,000:1) ratio of non-phosphopeptides to phosphopeptides, and and enables identification of eight mono- and multi-phosphopeptides from standard β-casein tryptic digests. Tyrosine phosphopeptides were specifically detected via the recognition capability of cucurbit[6]uril integrated into the monolith. The method has remarkably specific enrichment capacity for phosphopeptides from samples including human serum, nonfat milk, and human acute myelocytic leukemia cell lysate. Graphical abstractSchematic representation of a monolith integrated with perovskite and cucurbit[6]uril. The monolithic column was coupled with mass spectrometry and applied to the enrichment of phosphopeptides. The method has remarkably specific enrichment capacity for phosphopeptides from complex biological samples.
Collapse
|
32
|
Ultrasensitive electrochemical sensing of dopamine by using dihydroxylatopillar[5]arene-modified gold nanoparticles and anionic pillar[5]arene-functionalized graphitic carbon nitride. Mikrochim Acta 2019; 186:703. [DOI: 10.1007/s00604-019-3869-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/20/2019] [Indexed: 11/26/2022]
|
33
|
Yue HY, Wu PF, Huang S, Wang ZZ, Gao X, Song SS, Wang WQ, Zhang HJ, Guo XR. Golf ball-like MoS 2 nanosheet arrays anchored onto carbon nanofibers for electrochemical detection of dopamine. Mikrochim Acta 2019; 186:378. [PMID: 31134402 DOI: 10.1007/s00604-019-3495-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/12/2019] [Indexed: 10/26/2022]
Abstract
Arrays of molybdenum(IV) disulfide nanosheets resembling the shape of golf balls (MoS2 NSBs) were deposited on carbon nanofibers (CNFs), which are shown to enable superior electrochemical detection of dopamine without any interference by uric acid. The MoS2 NSBs have a diameter of ∼ 2 μm and are made up of numerous bent nanosheets. MoS2 NSBs are connected by the CNFs through the center of the balls. Figures of merit for the resulting electrode include (a) a sensitivity of 6.24 μA·μM-1·cm-2, (b) a low working voltage (+0.17 V vs. Ag/AgCl), and (c) a low limit of detection (36 nM at S/N = 3). The electrode is selective over uric acid, reproducible and stable. It was applied to the determination of dopamine in spiked urine samples. The recoveries at levels of 10, 20 and 40 μM of DA are 101.6, 99.8 and 107.8%. Graphical abstract Schematic presentation of the golf ball-like MoS2 nanosheet balls/carbon nanofibers (MoS2 NSB/CNFs) by electrospining and hydrothermal process to detect dopamine (DA).
Collapse
Affiliation(s)
- Hong Yan Yue
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China.
| | - Peng Fei Wu
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Shuo Huang
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China.,Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Zeng Ze Wang
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Xin Gao
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Shan Shan Song
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Wan Qiu Wang
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Hong Jie Zhang
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Xin Rui Guo
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| |
Collapse
|
34
|
Gu C, Guo C, Li Z, Wang M, Zhou N, He L, Zhang Z, Du M. Bimetallic ZrHf-based metal-organic framework embedded with carbon dots: Ultra-sensitive platform for early diagnosis of HER2 and HER2-overexpressed living cancer cells. Biosens Bioelectron 2019; 134:8-15. [PMID: 30952013 DOI: 10.1016/j.bios.2019.03.043] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/03/2019] [Accepted: 03/20/2019] [Indexed: 12/15/2022]
Abstract
We report here a new bimetallic ZrHf metal-organic framework (ZrHf-MOF) embedded with abundant carbon dots (CDs) (denoted as CDs@ZrHf-MOF), which exhibits strong fluorescence and rich-amino-functionalization. The CDs@ZrHf-MOF can be applied as the scaffold for anchoring aptamer strands to determine human epidermal growth factor receptor-2 (HER2) and living HER2-overexpressed MCF-7 cells. The basic characterizations reveal that the CDs are embedded within the interior cavities of ZrHf-MOF without varying the nanostructure, leading to good biocompatibility, strong fluorescence, and high electrochemical activity of CDs@ZrHf-MOF. As compared with the pristine ZrHf-MOF, the CDs@ZrHf-MOF-based electrochemical aptasensor displays better sensing performances toward both HER-2 and MCF-7 cells, giving an extremely low detection limit of 19 fg mL-1 (HER2 concentration range: 0.001-10 ng mL-1) and 23 cell mL-1 (cell concentration range: 1 × 102~1 × 105 cell mL-1), with good selectivity, stability, reproducibility, and acceptable applicability. The proposed strategy for developing CDs@ZrHf-MOF-based aptasensor is promising for the early and sensitive detection of cancer markers and living cancer cells.
Collapse
Affiliation(s)
- Chenxi Gu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Chuanpan Guo
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China
| | - Zhenzhen Li
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China
| | - Minghua Wang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China
| | - Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| | - Linghao He
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China.
| | - Miao Du
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China.
| |
Collapse
|
35
|
Zhang X, Liu Q, Jin Y, Li B. Facile and Sensitive Fluorescence Assay of DNA Polymerase Activity Using Cu2+
and Ascorbate as Signal Developers. ChemistrySelect 2019. [DOI: 10.1002/slct.201803850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xingxing Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering; Shaanxi Normal University; Xi'an 710062 China
| | - Qiang Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering; Shaanxi Normal University; Xi'an 710062 China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering; Shaanxi Normal University; Xi'an 710062 China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering; Shaanxi Normal University; Xi'an 710062 China
| |
Collapse
|