1
|
Wang L, Ji D, Liu X, Lei W, Taniguchi Y, Ling Y. Recent Progress of Triplex DNA Formation and Its Applications. J Med Chem 2025; 68:5055-5074. [PMID: 40019113 DOI: 10.1021/acs.jmedchem.4c02518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Recently, much attention has been focused on oligonucleotide drugs that precisely control the gene expression. Among these, triplex-forming oligonucleotides (TFOs) represent common antigene strategies because they bind specifically to the major groove position of genomic DNA to form a triplex DNA structure. Thus far, this promising triplex formation technique represents a successful strategy with strong application prospects for gene manipulation applications (e.g., cancer, Huntington's disease, inflammatory disease, etc.), analytical detection (e.g., nucleic acid, small molecules, etc.), and nanotechnology (e.g., molecular machines, etc.). This review summarizes in detail the full range of potential applications described above, particularly the various chemical modification strategies that have facilitated the stepwise advancement of TFO-based oligonucleotide drugs in recent years to improve the effectiveness, specificity, and applicability of triplex DNA and synergistically promote the effectiveness of triplex DNA.
Collapse
Affiliation(s)
- Lei Wang
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Dongliang Ji
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Xiao Liu
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Wenzhuo Lei
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| | - Yosuke Taniguchi
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yong Ling
- School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, China
| |
Collapse
|
2
|
Xie Z, Zhang S, Wu Y, Liang J, Yao W, Qu R, Tong X, Zhang G, Yang H. Interaction of isoquinoline alkaloids with pyrimidine motif triplex DNA by mass spectrometry and spectroscopies reveals diverse mechanisms. Heliyon 2023; 9:e14954. [PMID: 37082631 PMCID: PMC10112036 DOI: 10.1016/j.heliyon.2023.e14954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/22/2023] Open
Abstract
Isoquinoline alkaloids represent an important class of molecules due to their broad range of pharmacology and clinical utility. Prospective development and use of these alkaloids as effective anticancer agents have elicited great interest. In this study, in order to reveal structure-activity relationship, we present the characterization of bioactive isoquinoline alkaloid-DNA triplex interactions, with particular emphasis on the sequence selectivity and preference of binding to the two types of DNA triplexes, by electrospray ionization mass spectrometry (ESI-MS) and various spectroscopic techniques. The six alkaloids, including coptisine, columbamine, epiberberine, berberrubine, jateorhizine, and fangchinoline, were selected to explore their interactions with the TC and TTT triplex DNA structures. Berberrubine, fangchinoline, coptisine, columbamine, and epiberberine have preference for TC rich DNA sequences compared to TTT rich DNA triplex based on affinity values in MS. The experimental results from different fragmentation modes in tandem MS, subtractive and hyperchromic effects in UV absorption spectra, fluorescence quenching and enhancement in fluorescence spectra, and strong conformational changes in circular dichroism (CD) hinted that the interaction between isoquinoline alkaloid-TC/TTT DNA had diverse mechanisms including at least two different binding modes: the electrostatic binding and the intercalation binding. Interestingly, columbamine, berberrubine, and fangchinoline can stabilize TTT triplex as inferred from optical thermal melting profiles, while it was not the case in TC triplex. These results provide new insights into binding of isoquinoline alkaloids to pyrimidine motif triplex DNA.
Collapse
Affiliation(s)
- Zhaoyang Xie
- Northeast Asia Institute of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Sunuo Zhang
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yi Wu
- Northeast Asia Institute of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Jinling Liang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Wenbin Yao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ruoning Qu
- China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Xiaole Tong
- Jilin Jian Yisheng Pharmaceutical Co., Ltd., Jian, 134200, China
| | - Guang Zhang
- China-Japan Union Hospital of Jilin University, Changchun, 130033, China
- Corresponding author.
| | - Hongmei Yang
- Northeast Asia Institute of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, China
- Corresponding author.
| |
Collapse
|
3
|
Peng S, Chang Y, Zeng X, Lai R, Yang M, Wang D, Zhou X, Shao Y. Selectivity of natural isoquinoline alkaloid assembler in programming poly(dA) into parallel duplex by polyvalent synergy. Anal Chim Acta 2023; 1241:340777. [PMID: 36657870 DOI: 10.1016/j.aca.2022.340777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/04/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
Ligand-induced assembly of disordered DNAs attracts much attention due to its potential action in transcription regulation and molecular switches-based sensors. Among natural isoquinoline alkaloids (NIAs), we screened out nitidine (NIT) as polyvalent-binding assembler to program poly(dA) into a parallel duplex assembly at neutral pH. The molecule planarity of NIAs was believed to be a determinant factor in programming the parallel poly(dA) assembly. Poly(dA) with more than six adenines can initiate the synergistic binding of NIT to generate the parallel assembly. It is expected that one A-A pair in duplex can bind one NIT molecule provided that poly(dA) is long enough, suggesting the pivotal role of the polyvalent synergy of NIT in programming the parallel poly(dA) assembly. A gold nanoparticles-based colorimetric method was also developed to screen NIT out of NIAs having the potential to construct the poly(dA) assembly. Our work will inspire more interest in developing polyadenine-based switches and sensors by concentrating NIT within the polyadenine parallel assembly.
Collapse
Affiliation(s)
- Shuzhen Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Yun Chang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Xingli Zeng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Rong Lai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Mujing Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Dandan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China.
| |
Collapse
|
4
|
Rational design of an allosteric G-quadruplex aptamer probe for ultra-sensitive detection of melamine in milk. Int J Biol Macromol 2022; 210:430-438. [PMID: 35500779 DOI: 10.1016/j.ijbiomac.2022.04.198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022]
Abstract
Efficient and accurate detection of melamine in dairy products remains a crucial yet challenging task. Herein, an allosterically modulated G-quadruplex-integrated aptamer is rationally designed with thymine-rich recognition termini for melamine binding. The detection process is facile by simply introducing the analyte into the mixture consisting of G-quadruplex aptamer probes, exonuclease III, and thioflavin T (ThT). The detection feasibility is confirmed by the polyacrylamide gel electrophoresis and fluorescence measurement results. This exonuclease III-assisted signal amplifiable approach works well in a linear range from 0.1 nM to 0.1 μM. Moreover, a detection limit as low as 83 pM is easily achieved, which is almost five orders of magnitude smaller than the maximum allowable melamine levels (about 8 μM) defined by many countries all over the world. The whole assay time for each test is no longer than 1 h. Additionally, the scheme is highly specific and satisfactory recovery rates (from 91% to 104%) are readily obtained when challenged with melamine-spiked milk samples. Therefore, the label-free, turn-on, low-cost, and time-efficient method can be used for reliable detection of melamine in an easily manipulated and ultra-sensitive manner, which may find its utilization in the field of food safety, biomedical engineering, and clinical diagnosis.
Collapse
|
5
|
Liu S, Xiang K, Wang C, Zhang Y, Fan GC, Wang W, Han H. DNA Nanotweezers for Biosensing Applications: Recent Advances and Future Prospects. ACS Sens 2022; 7:3-20. [PMID: 34989231 DOI: 10.1021/acssensors.1c01647] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
DNA nanotweezers (DTs) are reversible DNA nanodevices that can optionally switch between opened and closed states. Due to their excellent flexibility and high programmability, they have been recognized as a promising platform for constructing a diversity of biosensors and logic gates, as well as a versatile tool for molecular biology studies. In this review, we provide an overview of biosensing applications using DTs. First, the design and working principle of DTs are introduced. Next, the signal producing principles of DTs are summarized. Furthermore, biosensing applications of DTs for varying targets and purposes, both in buffers and complex biological environments, are highlighted. Finally, we provide potential opportunities and challenges for the further development of DTs.
Collapse
Affiliation(s)
- Shanshan Liu
- The State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People’s Republic of China
| | - Kaikai Xiang
- The State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People’s Republic of China
| | - Chunyan Wang
- The State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People’s Republic of China
| | - Yutian Zhang
- The State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People’s Republic of China
| | - Gao-Chao Fan
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, People’s Republic of China
| | - Wenjing Wang
- The State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People’s Republic of China
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People’s Republic of China
| | - Heyou Han
- The State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People’s Republic of China
| |
Collapse
|