1
|
Wang T, Tan HS, Wang AJ, Li SS, Feng JJ. Fluorescent metal nanoclusters: From luminescence mechanism to applications in enzyme activity assays. Biosens Bioelectron 2024; 257:116323. [PMID: 38669842 DOI: 10.1016/j.bios.2024.116323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Metal nanoclusters (MNCs) have outstanding fluorescence property and biocompatibility, which show widespread applications in biological analysis. Particularly, evaluation of enzyme activity with the fluorescent MNCs has been developed rapidly within the past several years. In this review, we first introduced the fluorescent mechanism of mono- and bi-metallic nanoclusters, respectively, whose interesting luminescence properties are mainly resulted from electron transfer between the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels. Meanwhile, the charge migration within the structure occurs through ligand-metal charge transfer (LMCT) or ligand-metal-metal charge transfer (LMMCT). On such foundation, diverse enzyme activities were rigorously evaluated, including three transferases and nine hydrolases, in turn harvesting rapid research progresses within past 5 years. Finally, we summarized the design strategies for evaluating enzyme activity with the MNCs, presented the major issues and challenges remained in the relevant research, coupled by showing some improvement measures. This review will attract researchers dedicated to the studies of the MNCs and provide some constructive insights for their further applications in enzyme analysis.
Collapse
Affiliation(s)
- Tong Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Hong-Sheng Tan
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shan-Shan Li
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
2
|
Yang R, Hu J, Zhang L, Liu X, Huang Y, Zhang L, Fan Q. Recent advances in optical biosensing and imaging of telomerase activity and relevant signal amplification strategies. Analyst 2024; 149:290-303. [PMID: 38099470 DOI: 10.1039/d3an01900d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Telomerase as a new valuable biomarker for early diagnosis and prognosis evaluation of cancer has attracted much interest in the field of biosensors, cell imaging, and drug screening. In this review, we mainly focus on different optical techniques and various signal amplification strategies for telomerase activity determination. Fluorometric, colorimetry, chemiluminescence, surface-enhanced Raman scattering (SERS), and dual-mode techniques for telomerase sensing and imaging are summarized. Signal amplification strategies include two categories: one is nucleic acid-based amplification, such as rolling circle amplification (RCA), the hybridization chain reaction (HCR), and catalytic hairpin assembly (CHA); the other is nanomaterial-assisted amplification, including metal nanoclusters, quantum dots, transition metal compounds, graphene oxide, and DNA nanomaterials. Challenges and prospects are also discussed to provide new insights for future development of multifunctional strategies and techniques for in situ and in vivo analysis of biomarkers for accurate cancer diagnosis.
Collapse
Affiliation(s)
- Ruining Yang
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Junbo Hu
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Longsheng Zhang
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Xingfen Liu
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Yanqin Huang
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Lei Zhang
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Quli Fan
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
3
|
Sutarlie L, Chee HL, Ow SY, Aabdin Z, Tjiu WW, Su X. A rapid total bacterial count method using gold nanoparticles conjugated with an aptamer for water quality assessment. NANOSCALE 2023; 15:16675-16686. [PMID: 37823252 DOI: 10.1039/d3nr02635c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Total bacterial count is a routine parameter in microbial safety assessment used in many fields, such as drinking water and industrial water testing. The current gold standard method for counting bacteria is the plate culture method (or heterotrophic plate count) that requires a microbiology laboratory and a long turnover time of at least 24 hours. To tackle these shortcomings, we developed a rapid total bacterial count method that relies on gold nanoparticles (AuNPs) conjugated with affinity ligands to stain bacterial cells captured on a syringe filter. Two affinity ligands were exploited, i.e. a DNA aptamer (AB2) and a lectin Griffonia simplicifolia II (GSII) that recognize bacterial cell wall commonalities, i.e. peptidoglycan and its amino sugars. Upon proper formulation with addition of a surfactant, the AB2 conjugated AuNPs (AB2-AuNPs) can selectively stain bacterial cells captured on the filter membrane with a higher sensitivity than GSII-AuNPs. Measuring the staining intensity using an in-house-built handheld detector allowed us to correlate its intensity reading with the total number of bacterial units present. This bacteria quantification method, referred to as "Filter-and-Stain", had an efficient turnover time of 20 min suggesting its potential usage for rapid on-site applications. Additionally, the detection sensitivity provided by the AB2-AuNP nanoreagent offered a limit of detection as low as 100 CFU mL-1. We have demonstrated the use of the AB2-AuNPs for detection of bacteria from environmental water samples.
Collapse
Affiliation(s)
- Laura Sutarlie
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Heng Li Chee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Sian Yang Ow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Zainul Aabdin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Weng Weei Tjiu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Xiaodi Su
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
- Department of Chemistry, National University of Singapore, Block S8, Level 3, 3 Science Drive 3, Singapore 117543
| |
Collapse
|
4
|
Jia Z, Tu K, Xu Q, Gao W, Liu C, Fang B, Zhang M. A novel disease-associated nucleic acid sensing platform based on split DNA-scaffolded sliver nanocluster. Anal Chim Acta 2021; 1175:338734. [PMID: 34330446 DOI: 10.1016/j.aca.2021.338734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/01/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022]
Abstract
Disease-associated nucleic acids, such as DNAs and miRNAs, are important biomarkers for the diagnosis, prognosis and treatment guidance of human diseases. Therefore, the accurate and sensitive detection of nucleic acid is of great significance for the early diagnosis of diseases. DNA-scaffolded silver nanocluster (DNA-Ag NC) is a new type of probe with good photostability and low toxicity that has been widely used in biomedical analysis. In this work, a new universal sensing platform based on target triggered labeling luminescent DNA-Ag NC for disease-related nucleic acids detection was constructed. The assembled split DNA fragment pair (C4AC4T and C3GT4) could be used as a template to develop a bright green fluorescent Ag NC. According to this phenomenon, we devised two probe sequences DNA 1 and DNA 2, which could hybridize to the same one target and contained a different split fragment of Ag NC' scaffold. The target compelled the split fragments close to each other through base pairing with DNA 1 and DNA 2, thus quantification of the target could be achieved through measuring green fluorescence of Ag NC that produced by assembled scaffold in ternary hybrid products. We applied this platform successfully for miR-362, a potential biomarker of inflammatory bowel diseases (IBD), or HIV-related DNA (hDNA) detection, achieving the detection limits of 6.5 nM and 1.7 nM, respectively. Both of the assays showed excellent reproducibility, selectivity and potential applications in human serum samples. In summary, an economic and convenient universal platform was developed for disease-associated nucleic acid detection.
Collapse
Affiliation(s)
- Zhenzhen Jia
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, 710061, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Wenhui Gao
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, 710061, China
| | - Cui Liu
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, 710061, China
| | - Biyun Fang
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, 710061, China.
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
5
|
Gambucci M, Zampini G, Quaglia G, Vosch T, Latterini L. Probing the Fluorescence Behavior of DNA‐Stabilized Silver Nanoclusters in the Presence of Biomolecules. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202000262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marta Gambucci
- Department of Chemistry, Biology and Biotechnology University of Perugia Via Elce di Sotto, 8 06123 Perugia Italy
| | - Giulia Zampini
- Department of Chemistry, Biology and Biotechnology University of Perugia Via Elce di Sotto, 8 06123 Perugia Italy
| | - Giulia Quaglia
- Department of Chemistry, Biology and Biotechnology University of Perugia Via Elce di Sotto, 8 06123 Perugia Italy
| | - Tom Vosch
- Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Loredana Latterini
- Department of Chemistry, Biology and Biotechnology University of Perugia Via Elce di Sotto, 8 06123 Perugia Italy
| |
Collapse
|
6
|
Beyond native deoxyribonucleic acid, templating fluorescent nanomaterials for bioanalytical applications: A review. Anal Chim Acta 2020; 1105:11-27. [DOI: 10.1016/j.aca.2020.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 12/16/2022]
|
7
|
Target induced framework nucleic acid nanomachine with doxorubicin-spherical nucleic acid tags for electrochemical determination of human telomerase activity. Mikrochim Acta 2020; 187:97. [PMID: 31907624 DOI: 10.1007/s00604-019-4095-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 12/23/2019] [Indexed: 02/01/2023]
Abstract
A stable and enzyme-free method is described for highly sensitive determination of telomerase activity. It is based on the use of a framework nucleic acid (FNA) nanomachine and doxorubicin-spherical nucleic acid (DSNA) tags. Upon incubation with telomerase, the primer-tetrahedron becomes elongated to form the handed swing arm. The extended swing arm autonomously moves along the predefined track consisting of entropy-tetrahedron by consecutive strand displacement under the aid of fuel-tetrahedron. As a result, many (entropy-tetrahedron)-(fuel-tetrahedron) complexes are assembled for combining the DSNA tags. This results in an amplified electrochemical signal, typically measured at around -0.63 V (Ag/AgCl). The use of an enzyme-free FNA nanomachine and of DSNA tags warrants outstandingly high stability and sensitivity. The method shows a broad dynamic correlation of telomerase activity in cell extracts. The analytical range extends from 10 to 1.0 × 104 HeLa cells mL-1 with a lower detection limit of 2 cells mL-1. The differences in telomerase activity between different cancer cells can be easily evaluated. The method was further verified by quantifying telomerase activity of cancer cells in accumulated normal cells. Therefore, the sensing method has great potential for clinical application. Graphical abstractSchematic representation of the electrochemical biosensor based on target induced framework nucleic acid nanomachine with doxorubicin-spherical nucleic acids (DSNA) tags, which can be used to the determination of telomerase activity in accumulated normal cells. dNTP: Deoxynucleotide triphosphates; FT: Fuel-tetrahedron.
Collapse
|
8
|
Guo Y, Pan X, Zhang W, Hu Z, Wong KW, He Z, Li HW. Label-free probes using DNA-templated silver nanoclusters as versatile reporters. Biosens Bioelectron 2019; 150:111926. [PMID: 31929081 DOI: 10.1016/j.bios.2019.111926] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/17/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
Abstract
DNA-templated silver nanoclusters (DNA-AgNCs) have demonstrated pervasive applications in analytical chemistry recently. As a way of signal output in DNA-based detection methods, DNA-AgNCs have prominent advantages: first, the recognition and synthesizing sequences are naturally integrated in one DNA probe without any chemical modification or connection; second, the emissive wavelength of DNA-AgNCs can be adjusted in a wide range by employing different sequences; third, DNA-AgNCs can be utilized for producing not only fluorescence, also electrochemiluminescence and electrochemical signals. Besides, they also show potential applications for cell imaging, and are considered to be one of the most ideal nanomaterials for in-vivo imaging due to their ultra-small particle size. In this review, a brief and comprehensive introduction of DNA-AgNCs is firstly given, then label-free probes using DNA-AgNCs are classified and summarized, lastly concluding perspectives are provided on the defects and application potentials.
Collapse
Affiliation(s)
- Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Xinyue Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wenya Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhigang Hu
- Wuxi Children's Hospital, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ka-Wang Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Zhike He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hung-Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
9
|
Ratiometric determination of human papillomavirus-16 DNA by using fluorescent DNA-templated silver nanoclusters and hairpin-blocked DNAzyme-assisted cascade amplification. Mikrochim Acta 2019; 186:613. [DOI: 10.1007/s00604-019-3732-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/01/2019] [Indexed: 11/26/2022]
|